
microsystems

Using nroff AND troff
on the Sun Workstation®

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Part i\n: SOO" U21,()3
R.~.'\'ision Aof 17 1906

Credits and Acknowledgements

Material in this Using nroff and troff on the Sun Workstation comes from: NroffiTroffUser' s Manual, Joseph
F. Ossanna, Bell Laboratories, Murray Hill, New Jersey; A TroffTutorial, Brian W. Kernighan, Bell Laboratories,
Murray Hill, New Jersey; Typing Documents on the UNIX System: Using the -ms Macros with Troff and Nroff, M. E.
Lesk, Bell Laboratories, Murray Hill, New Jersey; A Guide to Preparing Documents with -ms, M. E. Lesk, Bell
Laboratories, Murray Hill, New Jersey; Document Formatting on UNIX Using the -ms Macros, Joel Kies, University
of California, Berkeley, California; Writing Papers with NroffUsing -me, Eric P. Allman, University of Cali fomi a,
Berkeley; and Introducing the UNIX System, Hemy McGilton, Rachel Morgan, McGraw-Hill Book Company, 1983.
These materials are gratefully acknowledged.

Sun Microsystems, Sun Workstation, and the combination of Sun with a numeric suffix are trademarks
of Sun Microsystems, Inc.

UNIX, UNIXl32V, UNIX System ill, and UNIX System V are trademarks of AT&T Bell Laboratories.

Copyright © 1986 by Sun Microsystems Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written per­
mission from Sun Microsystems.

Contents

Preface .. xv

Chapter 1 Introduction .. 3

1.1. nroff and troff .. 3

Text Formatting Versus Word Processing ... 4

The Evolution of nroff and troff .. 5

Preprocessors and Postprocessors ... 6

1.2. troff, Typesetters, and Special-Purpose Formatters 6

1.3. Using the nroff and troff Text Formatters ... 6

Options Common to nroff and troff ... 7

Options Applicable Only to nrof f .. 7

Options Applicable Only to troff .. 8

1.4. General Explanation of troff and nroff Source Files 8

Backspacing ... 9

Comments ... 9

Continuation Lines ... 10

Transparent Throughput .. 10

Formatter and Device Resolution .. 10

Specifying Numerical Parameters .. '" 1 0

Numerical Expressions .. 12

1.5. Output and Error Messages .. 13

Chapter 2 Line Format .. 17

2.1. Controlling Line Breaks .. 18

.br -Break Lines .. 20

-iii-

Contents Continued

Continuation Lines and Interrupted Text .. 20

2.2. Justifying Text and Filling Lines .. 21

· ad - Specify Adjusting Styles .. 21

· na - No Adjusting ... 22

· nf and . f i-Tum Filling Off and On ... 23

2.3. Hyphenation ... 24

· nh and . h Y - Control Hyphenation .. 24

· hw - Specify Hyphenation Word List ... 26

· he - Specify Hyphenation Character .. 27

2.4. . ee -CenterLines of Text .. 27

2.5. . ul and . eu - Underline or Emphasize Text .. 28

2.6. . uf - Underline Font .. 30

Chapter 3 Page Layout ... 33

3.1~ Margins and Indentations .. 36

· po - Set Page Offset ... 36

· 11 - Set Line Length ... 36

· in - Set Indent ... 37

· t i-Temporarily Indent One Line .. 39

3.2. Page Lengths, Page Breaks, and Conditional Page Breaks 42

· pI - Set Page Length ... 42

· bp - Start a New Page ... 43

· pn - Set Page Number ... 44

· ne - Specify Space Needed .. 44

3.3. Multi-Column Page Layout by Marking and Returning 45

• mk - Mark Current Vertical Position .. 45

· rt - Return to Marked Vertical Position ... 46

Chapter 4 Line Spacing and Character Sizes .. 49

4.1. . sp - Space Vertically ... 49

4.2. . ps - Change the Size of the Type ... 50

4.3. . vs - Change Vertical Distance Between Lines 52

4.4. . 1 s - Change Line Spacing .. 54

-iv-

Contents Continued

4.5. \x Function - Get Extra Line-Space .. 54

4.6. . sv - Save Block of Vertical Space ... 54

4.7. . os - Output Saved Vertical Space .. 55

4.8. . ns - Set No Space Mode .. 56

4.9. . r s - Restore Space Mode .. 56

4.10. . s s - Set Size of Space Character .. 57

4.11. . es - Set Constant-Width Characters .. 57

Chapter 5 Fonts and Special Characters .. 61

5.1. . ft - Set Font ... 62

5.2. . fp - Set Font Position .. 63

5.3. . f z - Force Font Size ... 63

5.4. . bd - Artificial Bold Face .. 64

5.5. Character Set .. 65

5.6. Fonts .. 66

5.7. . 1 g - Control Ligatures ... 66

Chapter 6 Tabs, Leaders, and Fields .. 71

6.1. . ta - Set Tabs ... 71

Setting Relative Tab Stops .. 72

Right-Adjusted Tab Stops .. 72

Centered Tab Stops .. 72

. t e - Change Tab Replacement Character ... 73

Summary of Tabs .. 74

6.2. Leaders - Repeated Runs of Characters .. 75

. 1 e - Change the Leader Character ... 77

6.3. . f'e - Set Field Characters ... 78

Chapter 7 Titles and Page Numbering .. 85

7.1. Titles in Page Headers .. 85

7.2. Fonts and Point Sizes in Titles ... 87

7.3. . pc - Page Number Character ... 88

7.4. . t 1 Request - Three Parameters .. 89

-v-

Contents Continued

Chapter 8 traff Input and Output ... 93

8.1. . so - Read Text from a File ... 93

8.2. . nx - Read Next Source File .. 95

8.3. Pipe Output to a Specified Program (nroff only) 95

8.4. . rd - Read from the Standard Input .. 96

8.5. . ex - Exit from nroff or troff ... 98

8.6. . tm - Send Messages to the Standard Error File 98

Chapter 9 Strings ... 101

9.1. . ds - Define Strings .. 101

9.2. . as - Append to a String .. 103

9.3. Removing or Renaming String Definitions .. 105

Chapter 10 Macros, Diversions, and Traps ... 109

10.1. Macros ... 109

· de - Define a Macro ... 109

· rm - Remove Requests, Macros, or Strings .. 111

· rn - Rename Requests, Macros or Strings .. 112

Macros With Arguments .. 112

• am - Append to a Macro .. 116

Copy Mode Input Interpretation ... 116

10.2. Using Diversions to Store Text for Later Processing 116

· di - Divert Text ... 117

· da - Append to a Diversion ... 118

10.3. Using Traps to Process Text at Specific Places on a Page 119

• wh - Set Page or Position Traps ... 119

· ch - Change Position of a Page Trap ... 120

· dt - Set a Diversion Trap ... 120

· it - Set an Input-Line Count Trap .. 121

• em - Set the End of Processing Trap ... 121

Chapter 11 Number Registers ... 125

11.1. . nr - Set Number Registers ... 125

-vi-

Contents Continued

11.2. Auto-Increment Number Registers ... 127

11.3. Arithmetic Expressions with Number Registers ... 128

11.4. . af - Specify Format of Number Registers .. 129

11.5. . r r - Remove Number Registers ... 131

Chapter 12 Drawing Lines and Characters ... 135

12.1. \ u and \d Functions - Half-Line Vertical Movements 135

12.2. Arbitrary Local Horizontal and Vertical Motions 136

\ v Function - Arbitrary Vertical Motion .. 136

\h Function - Arbitrary Horizontal Motion .. 137

12.3. \ 0 Function - Digit-Size Spaces .. 138

12.4. '\ ' Function - Unpaddable Space ... 139

12.5. \ I and \ ... Functions - Thick and Thin Spaces 140

12.6. \& Function - Non-Printing Zero-Width Character 141

12.7. \ 0 Function - Overstriking Characters ... 142

12.8. \z Function - Zero Motion Characters .. 142

12.9. \ w Function - Get Width of a String .. 143

12.10. \k Function - Mark Current Horizontal Place 144

12.11. \b Function - Build Large Brackets ... 145

12.12. \ r Function - Reverse Vertical Motions .. 146

12.13. Drawing Horizontal and Vertical Lines .. 146

\ 1 Function - Draw Horizontal Lines ... 146

\L Function - Draw Vertical Lines .. 147

Combining the Horizontal and Vertical Line Drawing
Functions ... 148

12.14. . me - Place Characters in the Margin .. 148

Chapter 13 Character Translations .. 153

13.1. Input Character Translations .. 153

13.2. . ee and . eo - Set Escape Character or Stop Escapes 153

13.3. . ee and . e2 - Set Control Characters .. 154

13.4. . tr - Output Translation ... 154

Chapter 14 Automatic Line Numbering .. 159

-vii-

Contents Continued

14.1. . nm-Number Output Lines ... 159

14.2. . nn - Stop Numbering Lines ... 160

Chapter 15 Conditional Requests ... 163

15.1. . if - Conditional Request .. 163

15.2. . ie and . el- If-Else and Else Conditionals 166

15.3. . ig - Ignore Input Text .. 166

Chapter 16 Debugging Requests ... 171

16.1. . pm - Display Names and Sizes of Defined Macros 171

16.2. . f 1 - Flush Output Buffer .. 172

16.3. . ab - Abort .. 172

Chapter 17 Enyironments ... 175

17.1. . ev - Switch Environment .. 175

Appendix A troff Request Summary ... 179

Appendix B Font and Character Examples .. 187

B.1. Font Style Examples ... 187

B.2. Non-ASCII Characters and minus on the Standard Fonts 188

B.3. Non-ASCII Characters and i, {, '<, +, -, =, and * on the Special
Font ... 188

Appendix C Escape Sequences ... 193

Appendix D Predefined Number Registers .. 197

Appendix E troff Output Codes .. 201

E.1. Codes 0 Oxxxxxx - Flash Codes to Expose Characters 202

E.2. Codes lxxxxxxx - Escape Codes Specifying Horizontal
Motion ... 203

E.3. Codes Olln:xxx-Lead Codes Specifying Vertical Motion 203

E.4. Codes 010 lxxxx - Size Change Codes .. 203

E.5. Codes 010 Oxxxx - Control Codes ... 204

- viii-

Contents Continued

E.6. How Fonts are Selected ... 205

E.7. Initial State of me C/Aff .. 206

-ix-

Tables

Table 1-1 Scale Indicators for Numerical Input .. 11

Table 1-2 Default Scale Indicators for Certain traff Requests and
Functions ... 11

Table 1-3 Arithmetic Operators and Logical Operators for Expressions 12

Table 2-1 Constructs that Break the Filling Process .. 19

Table 2-2 Formatter Requests that Cause a Line Break ... 20

Table 2-3 Adjusting Styles for Filled Text .. 21

Table 5-1 Exceptions to the Standard ASCII Character Mapping 66

Table 6-1 Types of Tab Stops ... 74

Table 7-1 Requests that Cause a Line Break .. 87

Table 11-1 Access Sequences for Auto-incrementing Number
Registers ... 128

Table 11-2 Arithmetic Operators and Logical Operators for
Expressions ... 128

Table 11-3 Interpolation Formats for Number Registers ... 130

Table 12-1 traff Width Function - ct Number Register Values 144

Table 12-2 Pieces for Constructing Large Brackets ... 145

Table 15-1 Built-In Condition Names for Conditional Processing 166

-xi-

Tables Continued

Table A-1 Summary of nroff and troff Requests .. 179

Table A-2 Notes in me Tables ... 184

Table B-1 Summary of troff Special Characters .. 188

Table C-1 troff Escape Sequences ... 193

Table D-1 General Number Registers ... 197

Table D-2 Read-Only Number Registers .. 197

Table E-1 Size Change Codes ... 203

Table E-2 Single Point-Sizes versus Double Point-Sizes .. 204

Table E-3 C/ A!f Control Codes and their Meanings .. 205

Table E-4 Correspondence Between Rail, Mag, Tilt, and Font Number 206

-xii-

Figures

Figure 2-1 Filling and Adjusting Styles ... 22

Figure 3-1 Layout of a Page .. 35

- xiii-

Summary of Contents

Preface

Using nroff and troff on the Sun Workstation provides reference informa­
tion and examples for the text fonnatters nroff and troff. We assume you
are familiar with a terminal keyboard and the Sun system. If you are not, see
Getting Started with UNIX: Beginner's Guide for information on the basics, like
logging in and the Sun file system. If you are not familiar with text editors, read
Doing More With UNIX: Beginner's Guide and Introduction to UNIX Text Editing
in Editing Text Files on the Sun Workstation. Finally, we assume that you are
using a Sun Workstation, although specific terminal information is also provided.

For additional details on Sun system commands and programs, see the Com­
mands Reference Manualfor the Sun Workstation.

The contents are:

1. Introduction - Describes what troff can do for you, some tools you can
use with troff or nroff to refine your results, how to use nroff and
troff, the differences between the two text formatting programs, and a lit­
tle about the mechanisms built-in to nroff and troff.

2. Line Format - Explains how the text formatting programs fill and adjust
text input lines and how various formatting requests affect filling and adjust­
ing functions in troff.

3. Page Layout - Describes the default page layout parameters built-in to
troff and how you can alter them. Also explains how certain formatting
requests interact in laying out pages.

4. Line SPacing and Character Sizes - Explains the available type and spac­
ing sizes in troff and nroff, and how to change them.

5. Fonts and Special Characters - Describes the fonts available with nroff
and troff and how to change them.

6. Tabs, Leaders, and Fields - Explains what tabs, leaders, and fields are, and
how to set them.

7. Titles and Page Numbering - Explains how to create page headers and
page footers. Also covers how to use the built-in troff page number
register to print page numbers on your document automatically.

-xv-

Preface Continued

Conventions Used in This
Manual

8. troff Input and Output - Describes how to embed files within files, to
switch input from one file to another, to display a message on your terminal
when troff reaches a certain point in a file, and in nroff only, how to
pipe the output from a file to a program by using a special nro f f command
in the file.

9. Strings - Explains how to give a string of characters a new name so you
can reference them easily. Also provides a facility for referencing the values
of the strings.

10. Macros, Diversions, and Traps - Describes how to define macros, store
information in diversions, and use diversions and traps to process text at
specific places on pages.

11. Number Registers - Explains what troff number registers are and what
you can use their values for.

12. Drawing Lines and Characters - Describes the several built-in troff
functions for moving to arbitrary places on the page and for drawing things.

13. Character Translations - Describes how to change the escape character
and translate the value of one character into another.

14. Automatic Line Numbering - Explains how to use the troff requests for
numbering lines in the output file.

15. Conditional Requests - Describes trof f mechanisms for conditionally
accepting input.

16. Debugging Requests - Explains requests for displaying names and sizes of
defined macros, flushing the output buffer, and aborting the formatting.

17. Environments - Describes how to shift input processing between the three
nroff /troff environments.

A. troff Request Summary - A quick reference summarizing nroff and
troff requests.

B. Font and Character Examples - Several tables of special characters like
greek letters, foreign punctuation, and math symbols.

C. Escape Sequences - Summarizes escape sequences for obtaining values of
number registers, for describing arbitrary motions and drawing things, and
for specifying certain miscellaneous functions.

D. Predefined Number Registers - Tables of troff General and Predefined
Number Registers

E. troff Output Codes - A summary of the binary codes for the CIAIT pho­
totypesetter.

Throughout this manual we use

hostname%

as the prompt to which you type system commands. Bol.d face type­
writer font indicates commands that you type in exactly as printed on the

-xvi-

Notation Used in This Manual

Preface Continued

page of this manual. Regular typewriter font represents what the
system prints out to your screen. Typewriter font also specifies Sun system com­
mand names (program names) and illustrates source code listings. Italics indi­
cates general arguments or parameters that you should replace with a specific
word or string. We also occasionally use italics to emphasize important terms.

Numerical parameters are indicated in this manual in two ways. ±N means that
the argument may take the forms N, +N, or -N and that the corresponding effect
is to set the' affected parameter to N, to increment it by N, or to decrement it by N
respectively. Plain N means that an initial algebraic sign is not an increment
indicator, but merely the sign of N. Generally, unreasonable numerical input is
either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are . sp, . wh,
.ch, .nr,and .if. The requests .ps, .ft, .po, .vs, .1s, .11,
. in, and .1 t restore the previous parameter value in the absence of an argu­
ment.

Single-character arguments are indicated by single lower case letters and one- or
two-character arguments are indicated by a pair of lower case letters. Character
string arguments are indicated by multi-character mnemonics.

- xvii-

1
Introduction

Introduction ... 3

1.1. nroff and troff .. 3

Text Formatting Versus Word Processing ... 4

The Evolution of nroff and troff .. 5

Preprocessors and Postprocessors ... 6

1.2. troff, Typesetters, and Special-Purpose Formatters 6

1.3. Using the nroff and troff Text Formatters ... 6

Options Common to nroff and troff ... 7

Options Applicable Only to nroff .. 7

Options Applicable Only to troff .. 8

1.4. General Explanation of troff and nroff Source Files 8

Backspacing ... 9

Comments ... 9

Continuation Lines ... 10

Transparent Throughput .. 10

Formatter and Device Resolution .. 10

Specifying Numerical Parameters ... 10

Numerical Expressions .. 12

1.5. Output and Error Messages .. 13

1.1. nroff and troff

1
Introduction

nroff and troff are text processing utilities for the Sun system. nroff for­
mats text for typewriter-like terminals (such as Diablo printers). troff is
specifically oriented to formatting text for a phototypesetter. nroff and troff
accept lines of text (to be printed on the final output device) interspersed with
lines of format control information (to specify how the text is to be laid out on
the page) and format the text into a printable, paginated document having a user­
designed style. nroff and troff offer unusual freedom in document styling,
including:

o detailed control over page layout;

o arbitrary style headers and footers;

o arbitrary style footnotes;

o automatic sequence numbering for paragraphs, sections, etc;

o multiple-column output;

o dynamic font and point-size control;

o arbitrary horizontal and vertical local motions at any point;

o a family of automatic overstriking, bracket construction, and line drawing
functions.

nroff and troff are highly compatible with each other and it is almost
al ways possible to prepare input acceptable to both. The formatters provide
requests (conditional input) so that you can embed input expressly destined for
either nroff or troff. nroff can prepare output directly for a variety of ter­
minal types and is capable of utilizing the full resolution of each terminal.

This manual 1 provides a user's guide and reference section for nr 0 f f and
troff. Note that throughout the text we refer to nroff and troff more or
less interchangeably - places where the narrative refers specifically to one or the
other processor are noted.

You should be aware that using nroff or troff 'in the raw' requires a
detailed knowledge of the way that these programs work and a certain knowledge

1 The material in this chapter evolved from A troffTutorial, by Brian Kernighan of Bell Laboratories, and
from nroffltroff User's Manual, originally written by Joseph Ossanna of Bell Laboratories.

~\sun ~~ microsystems
3 Revision A of 17 February 1986

4 Using nroff and troff on the Sun Workstation

Text Formatting Versus Word
Processing

of typographical tenns. nroff and troff don't do a great deal of work for
you - for example, you have to explicitly tell them how to indent paragraphs
and number pages and things like that.

If what you are trying to do is just get a job done (like writing a memo), you
shouldn't be reading this manual at all, but instead should be reading the chapter
Formatting Documents with the -msMacro Package
in the Formatting Documents on the Sun Workstation manual. If, on the other

hand, you would like to learn the fine details of a programming language
designed to control a typesetter, this is the place to start reading.

In many ways, nroff's and troff's control language resembles an assembly
language for a computer - a remarkably powerful and flexible one- many
operations must be specified at a level of detail and in a fonn that is too hard for
most people to use effectively.

The single most important rule when using troff is not to use it directly, but
through some intennediary such as one of the macro packages, or one of the vari-
0us preprocessors described in Formatting Documents on the Sun Workstation.
In the few cases where existing macro packages don't do the whole job, the solu­
tion is not to write an entirely new set of t ro f f instructions from scratch, but to
make small changes to adapt existing packages. In accordance with this strategy
of letting someone else do the work, the part oftroff described here is only a
small part of the whole, although it tries to concentrate on the more useful parts.
In any case, there is no attempt to be complete. Rather, the emphasis is on show­
ing how to do simple things, and how to make incremental changes to what
already exists. If you are interested in the complete story, look into the troff
source itself.

Many newcomers to the UNIXt system are surprised to find that there are no
word processors available. This is largely historical - the types of documents
(such as the Sun manuals) that people do with the UNIX system's text fonnatting
packages just can't be done with existing word processors. Before you get into
the details of nroff and troff, here is a short discussion on the differences
between text fonnatters and word processors, and their relative strengths and
weaknesses.

A word processor is a program that to some extent simulates a typewriter - text
is edited and fonnatted by one program. You type text at a computer terminal,
and the word processor fonnats the text on the screen for you as you go. You
usually get special effects like underlining and boldface by typing control indica­
tors. The word processor usually displays these activated features using inverse
video or special marks on the screen. The document is displayed on the tenninal
screen in the same fonnat as it will appear on the printing device. The effects of
this are often tenned 'What You See Is What You Get' (usually called WYSIWYG

and pronounced 'wizzi-wig'). Unfortunately, as has been pointed out, the prob­
lem with many WYSIWYG editors is that 'What You See Is All You Get'. In gen­
eral, word processors cannot handle large documents. In principle, it is possible

t UNIX is a trademark of AT&T Bell Laboratories.

~\sun ,~ microsystems
Revision A of 17 February 1986

The Evolution of nroff and
troff

Chapter 1 - Introduction 5

to write large manuals and even whole books with word processorst but the pro­
cess gets painful for large manuscripts. Sometimes a changet such as deleting a
sentence or inserting a new onet in the early part of a document can require that
the whole document has to be reformatted. A change in the overall structure of
the formatting requirements (for examplet a changed indentation depth) will also
mean that the whole document has to be reformatted. Word processors usually
don't cope with automatic chapter and section numbering (of the kind you see in
the Sun manuals), neither can they generate tables of contents and indices
automatically. These tasks have to be done manually, and are a potential source
of error. Word processors are eminently suitable for memos and letters, and can
handle short documents. But large documents, or formatting documents for
sophisticated devices like modern phototypesetterst requires a text formatter.

A textformatter such as nroff or troff does not in general perform any
editing - its only job is reading text from a file and formatting that text for
printing on some device. Entering the text into the file, and formatting the text
from that file for printing are two separate and independent operations. You
prepare your file of text using a text editor such as vi (described elsewhere in
this manual). The file contains text to be formatted, interspersed with formatting
instructions which control the layout of the final text. The text formatter reads
this file of text, and obeys the formatting instructions contained in the file. The
results of the formatting process is a finished document. The disadvantage of a
text fonnatter is that you have to run them to find out what the final result will
look like. Many people find the idea of embedded 'formatting commands'
foreignt as they do the idea of two separate processes (an edit followed by a run
of the formatter) to get the final document.

Notwithstanding all of the above, the UNIX system has had text formatting utili­
ties since the very beginning, and the UNIX system has many documents written
using the capabilities of nroff or troff.

One of the very first text formatting programs was called runoff and was a utility
for the Compatible Time Sharing System (CTSS) at MIT in the early 1960's.
Runoff was named for the way that people would say 'I'll just run off a docu­
ment'.

When the UNIX system came to have a text formatter, the text formatter was
called rolf, because UNIX people like to call things by short and cryptic names.
Roff was a simple program that was easy to work with as long as you were writ­
ing very small and simple documents for a line-printer. In some ways, roff is
easier to use than nroff or troff because roffhad built-in facilities such as
being able to specify running headers and footers for a document with simple
commands.

nroff stands for 'Newer rolf. troff is an adaptation of nroff to drive a
phototypsetting machine. Although troff is supposed to mean 'typesetter
rolf, some people have fonned the theory that trof f actually stands for
'Times Romanoff' because of troff's penchant for the Times Roman
typeface.

~\sun ~~ mlcrosystems
Revision A of 17 February 1986

6 Using nroff and troff on the Sun Workstation

Preprocessors and
Postprocessors

1.2. troff, Typesetters, and
Special-Purpose
Formatters

1.3. Using the nroff and
troff Text Formatters

nroff and troff are much more flexible (and much more complicated) pro­
grams - it's safe to say that they don't do a lot for you - for instance, you have
to manage your own pagination, headers, and footers. The way that nroff and
troff ease the burden is via facilities to define your own text formatting com­
mands (macros), define strings, and store and manipulate numbers. Without
these facilities, you would go mad (many people have - the author of this docu­
ment among them). In addition, there are supporting packages for doing special
effects such as mathematics and tabular layouts.

Because troff or nroff are so hard to use 'in the raw', various tools have
evolved to convert from human-oriented ways of specifying things into codes
that troff or nroff can understand. Tools that do translations for troff
or nrof f before the fact are called preprocessors. There are also tools that
hack over the output of nroff for different devices or for other requirements.
Tools that do conversions of troff or nroff output after the fact are called
postprocessors. Refer to the manual Formatting Documents on the Sun W orksta­
tion for explanations of nroff and troff pre- and postprocessors.

Please be sure to read this: this section covers some aspects of troff
that are generally glossed over in the traditional UNIX manuals. troff was
originally designed as a text formatter targeted to one specific machine - that
machine was called a Graphics Systems Incorporated (GSI) C/Arr (Computer
Assisted Typesetter). The CI AIT is a strange and wonderful device with strips of
film mounted on a revolving drum, lenses, and light pipes. The CI AIT flashes
character images on film which you then develop to produce page proofs for your
book or manual or whatever. The CI AIT is almost extinct now except for some
odd niches like Berkeley.

troff was written very much with the CIAIT in mind. The internal units of
measurement that troff uses are CIAIT units, troff only understands four
fonts at a time, and so on. Throughout this chapter, much of the terminology is
based on troff's intimate relationship with the CIAIT.

To use nroff or troff you first prepare your file of text with nroff or
troff requests embedded in the file to control the formatting actions. The
remainder of this document discusses the formatting commands. Then you run
the formatter at the UNIX command level like this:

hostname% nroff options files

or, of course:

hostname% troff options files

where options represents any of a number of option arguments andfiles
represents the list of files containing the document to be formatted.

An argument consisting of a single minus (-) is taken to be a file name
corresponding to the standard input. If no file names are given, input is taken
from the standard input.

.\sun ,~ microsystems
Revision A of 17 February 1986

Options Common to nroff
and troff

Options Applicable Only to
nroff

Chapter 1 - Introduction 7

Options may appear in any order so long as they appear before the files. There
are three parts to the list of options below: the first list of options are common to
both nroff and troff; the second list of options are only applicable to
nroff; the third list of options are only applicable to troff.

Each option is typed as a separate argument - for example,

hostname% nroff -04.8-10 -T300S -InS file1 file2

formats pages 4, 8,9, and 10 of a document contained in the files namedfilel and
file2, specifies the output terminal as a DASI-300S, and invokes the -msun macro
package.

-0 list
Print only pages whose page numbers appear in list, which consists of
comma-separated numbers and number ranges. A number range has the
form N-M and means pages N through M; an initial -N means from the
beginning to page N; and a final N- means from N to the end.

-nN
Number first generated page N.

-sN
Stop every N pages. nroff will halt prior to every N pages (default N=I)
to allow paper loading or changing, and will resume upon receipt of a new­
line.

-mname
Adds the macro file / us r /1 ib / tmac / tma c . name before the input files.

-raN
Register a (one-character) is set to N.

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the . rd request.

-z Suppress formatted output. The only output you get are messages from
. tm (terminal message) requests, and from diagnostics.

-h Output tabs used during horizontal spacing to speed output as well as reduce
byte count. Device tab settings assumed to be every 8 nominal character
widths. Default settings of input (logical) tabs is also initialized to every 8
nominal character widths.

-Tname
Specifies the name of the output terminal type. Currently-defined names are
37 for the (default) Model 37 Teletype@, tn300 for the GE TermiNet 300
(or any terminal without half-line capabilities), 30 OS for the DASI-300S,
300 for the DASI-300, and 450 for the DASI-450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolu­
tion.

Revision A of 17 February 1986

8 Using nroff and troff on the Sun Workstation

Options Applicable Only to
troff

1.4. General Explanation of
troff and nroff
Source Files

-t Direct output to the standard output instead of the phototypesetter.

-a Send a printable (ASCII) approximation of the results to the standard output.

-pN
Print all characters in point size N while retaining all prescribed spacings
and motions, to reduce phototypesetter elapsed time.

This section of the nroff and troff manual covers generic topics related to

the format of the input file, how requests are formed, and how numeric parame­
ters to requests are stated.

To use troff, you have to prepare not only the actual text you want printed,
but some information that tells how you want it printed. For troff, the text
and the formatting information are often intertwined. Most commands to

troff are placed on a line separate from the text itself, beginning with a period
(one command per line). For example:

Here is some text in the regular size characters, but we want
to make some of the text in a
.ps 14
larger size to emphasize something

changes the 'point size', that is, the size of the letters being printed, to '14 point'
(one point is 1172 inch) like this:

Here is some text in the regular size characters, but we want to make some of the
text in a larger size to emphasize something

Occasionally, though, something special occurs in the middle of a line - to
produce Area = 1tr 2 you have to type

Area = \ (*p\flr\fR\ l\s8\u2\d\sO

(which we will explain shortly). The backslash character (\) introduces troff
commands and special characters within a line of text.

To state the above more formally, an input file to be processed by troff or
nroff consists of text lines, which are destined to be printed, interspersed with
control lines, which set parameters or otherwise control subsequent processing.
A control line is usually called a request.

A request begins with a control character - normally . (period) or ' (apos­
trophe or acute accent) - followed by a one or two character name. A request is
either:

a basic request
(also called a command) which is one of the many predefined things that
nroff or troff can do. For example, .11 6. 5i is a basic request to
set the line-length to 6.5 inches, and . in 5 is a basic request to indent the
left margin by five en-spaces.

~\sun ,~ microsystems
Revision A of 17 February 1986

Backspacing

Comments

Chapter 1 - Introduction 9

a macro reference
specifies substitution of a user-defined macro in place of the request. A
macro is a predefined collection of basic requests and (possibly) other mac­
ros. For example, in the -ms macro package discussed elsewhere in this
manual, . LP is a macro to start a new left-blocked paragraph.

The ' (apostrophe or acute accent) control character suppresses the break
function- the forced output of a partially filled line- caused by certain
requests.

The control character may be separated from the request or macro name by white
space (spaces and/or tabs) for aesthetic reasons. Names must be followed by
either space or newline. nroff or troff ignores control lines whose names
are unrecognized.

Various special functions may be introduced anywhere in the input by means of
an escape character, normally \. For example, the function \nR interpolates
the contents of the number register whose name is R in place of the function.
Here R is either a single character name in which case the escape sequence has
the form \ nx, or else R is a two-character name, in which case the escape
sequence must have the form \ n (xx. In general, there are many escape
sequences whose one-character form is \ fx and whose two-character form is
\ f (xx, where f is the function and x or xx is the name.

Unless in copy mode, the ASCII backspace character is replaced by a backward
horizontal motion having the width of the space character. Underlining as a form
of line-drawing is discussed in the section on Arbitrary Motions and Drawing
Lines and Characters. A generalized overstriking function is also described in
the above- mentioned section.

Comments may be placed at the end of any line by prefacing them with \". A
comment line cannot be continued by placing a \ at the end of the line - see
the discussion on continuation lines below.

A line beginning with \" appears as a blank line and behaves like a . sp 1
request:

Here is a line of text
'" and here is a comment on a line by itself
here is another line of text

when we format the above lines we get this:

Here is a line of text

and here is another line of text

If you want a comment on a line by itself but you don't want it to appear as a
blank line, type it as . \ ":

~\sun ~~ microsystems
Revision A of 17 February 1986

10 Using nroff and troff on the Sun Workstation

Continuation Lines

Transparent Throughput

Formatter and Device
Resolution

Specifying Numerical
Parameters

Here is a line of text
.\" and here is a comment on a line by itself
and here is another line of text

when we format the above lines we get this:

Here is a line of text
and here is another line of text

An uncomfortably long input line that must stay one line (for example, a string
definition, or unfilled text) can be split into many physical lines by ending all but
the last one with the escape \. The sequence \(newline) is always ignored­
except in a comment - see below. This provides a continuation line facility.
The \ at the end of the line is called a concealed newline in the jargon.

An input line beginning with a \! is read in copy mode and transparently output
(without the initial \!); the text processor is otherwise unaware of the line's
presence. This mechanism may be used to pass control information to a post­
processor or to embed control lines in a macro created by a diversion. Refer to
Chapter 10 for information describing diversions.

traff internally uses 432 units/inch, corresponding to the phototypesetter
which has a horizontal resolution of 11432 inch and a vertical resolution of 11144
inch. nraff internally uses 240 units/inch, corresponding to the least common
multiple of the horizontal and vertical resolutions of various typewriter-like out­
put devices. t r a f f rounds horizontal/vertical numerical parameter input to the
actual horizontal/vertical resolution of the Graphic Systems typesetter. nraf f
similarly rounds numerical input to the actual resolution of the output device
indicated by the -T option (default Model 37 Teletype).

Many requests can have numerical arguments. Both nraff and traff
accept numerical input in a variety of units. The general form of such input is

.xx nnnnunits

where . xx is the request, nnnn is the number, and units is the "scale indicator" .

Scale indicators are shown in the following table, where S is the current type size
in points, V is the current vertical line spacing in basic units, and C is a nominal
character width in basic units.

~\sun ,~ microsystems
Revision A of 17 February 1986

Table 1-1

Chapter 1 - Introduction 11

Scale Indicatorsfor Numerical Input

Scale
Meaning

Number of basic units
Indicator troff nroff

i Inch 432 240
c Centimeter 432><50/127 240x50/127
p Pica = 116 inch 72 240/6
m Em = Spoints 6XS C
n En= Eml2 3XS C,sameasEm
p Point = 1172 inch 6 240/72
u Basic unit 1 1
v Vertical line space V V

none Default, see below

In nroff, both the em and the en are taken to be equal to the C, which is
output-device dependent; common values are 1110 and 1112 inch. Actual charac­
ter widths in nroff need not be all the same and constructed characters such as
-> (~) are often extra-wide.

The default scaling is ems for the horizontally-oriented requests and functions,
V s for the vertically-oriented requests and functions, p for the vertical spacing
request; and u for the number register and conditional requests. See Table 1-2 for
a summary of the default scale indicators for the troff requests and functions
that take scale indicators.

Table 1-2 Default Scale Indicatorsfor Certain traff Requests and Functions

Request Default Scaling Unit Request Default Scaling Unit

.11 ems .p1 vertical units (Vs)

.in " .wh "

.ti " .ch "

.ta " .dt "

.1t " .sp "

.po " .sv "

.mc " .ne "
\h " .rt "
\1 " \v "
.nr machine units (u) \x "
.if " \L "
.ie " .vs picas (p)

All other requests ignore any scale indicators. When a number register contain­
ing an already appropriately-scaled number is interpolated to provide numerical
input, the unit scale indicator u may need to be appe,nded to prevent an addi­
tional inappropriate default scaling. The number, N, may be specified in
decimal-fraction form but the parameter finally stored is rounded to an integer

~\sun ,~ microsystems
Revision A of 17 February 1986

12 Using nroff and troff on the Sun Workstation

number of basic units.

The absolute position indicator I (the pipe character) may precede a number N to
generate the absolute distance to the vertical or horizontal place N. For
vertically-oriented requests and functions, I N becomes the absolute distance in
basic units from the current vertical place on the page or in a diversion (see
Chapter 10 for the section on diversions) to the vertical place N. For all other
requests and functions, I N becomes the distance from the current horizontal
place on the input line to the horizontal place N. For example,

.sp I 3.2c

will space in the required direction to 3.2 centimeters from the top of the page.

Numerical Expressions Wherever numerical input is expected, you can type an arithmetic expression.
An expression involves parentheses and the arithmetic operators and logical
operators shown in the table below:

Table 1-3 Arithmetic Operators and Logical Operators for Expressions

Arithmetic Operator Meaning

+ Addition
- Subtraction
I Division

* Multiplication
% Modulo

Logical Operator Meaning

< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to

=or== Equal to
& and

or

Except where controlled by parentheses, evaluation of expressions is left-to-right
- there is no operator precedence.

In certain requests, an initial + or - is stripped and interpreted as an increment
or decrement indicator respectively. In the presence of default scaling, the
desired scale indicator must be attached to every 'number in an expression for
which the desired and default scaling differ. For example, if the number register
x contains 2 and the current point size is 10, then

.11 (4.25i+\nxP+3)/2u

will set the line length to 112 the sum of 4.25 inches + 2 picas + 30 points.

~\sun ~~ microsystems
Revision A of 17 February 1986

1.5. Output and Error
Messages

Chapter 1 - Introduction 13

The output from . tm, . pm, and the prompt from . rd, as well as various error
messages are written onto the UNIX standard error message output. The latter is
different from the standard output, where nroff formatted output goes. By
default, both are written onto the user's terminal, but they can be independently
redirected - in the case of troff, the standard output should always be
redirected unless the -a option is in effect, because troff's output is a
strange binary format destined to drive a typesetter.

Various error conditions may occur during the operation of nroff and
troff. Certain less serious errors having only local impact do not stop process­
ing. Two examples are word overflow, caused by a word that is too large to fit
into the word buffer (in fill mode), and line overflow, caused by an output line
that grew too large to fit in the line buffer; in both cases, a message is printed, the
offending excess is discarded, and the affected word or line is marked at the point .
of truncation with a * in nroff and a ¢= in troff. The philosophy is to con­
tinue processing, if possible, on the grounds that output useful for debugging
may be produced. If a serious error OCCUI'S, processing terminates, and an
appropriate message is printed. Examples are the inability to create, read, or
write files, and the exceeding of certain intemallimits that make future output
unlikely to be useful.

.\sun ,~ microsystelT1S
Revision A of 17 February 1986

2
Line Format

Line Format .. 17

2.1. Controlling Line Breaks .. 18

.br -Break Lines .. 20

Continuation Lines and Interrupted Text .. 20

2.2. Justifying Text and Filling Lines .. 21

· ad - Specify Adjusting Styles .. 21

· na - No Adjusting ... 22

· n f and . f i-Tum Filling Off and On ... 23

2.3. Hyphenation ... 24

· nh and . hy - Control Hyphenation .. 24

· h w - Specify Hyphenation Word List ... 26

· he - Specify Hyphenation Character .. 27

2.4. . ee - Center Lines of Text .. 27

2.5. . ul and . eu - Underline or Emphasize Text .. 28

2.6. . uf - Underline Font .. 30

2
Line Format

Perhaps the most important reason for using troff or nroff is to use its
filling and adjusting capabilities. Here is a summary of what filling and adjusting
mean:

Filling means that troff or nroff collects words from your input text
lines and assembles the collected words into an output text line until
some word doesn't fit. An attempt is then made to hyphenate the
word in an effort to assemble a part of it into the output line. Filling
continues until something happens to break the filling process, such
as a blank line in the text, or one of the troff or nroff requests
that break the line - things that break the filling process are dis­
cussed later on.

Adjusting means that once the line has been filled as full as possible, spaces
between words on the output line are then increased to spread out the
line to the current line-length minus any current indent. The para­
graphs you have just been reading are both filled and adjusted.
Justification implies filling - it makes no sense to adjust lines
without also filling them.

In the absence of any other information, troff's or nroff's standard
behavior is to fill lines and adjust for straight left and right margins, so it is quite
possible to create a neatly formatted document which only contains lines of text
and no formatting requests. Given this as a starting point, the simplest document
of all contains nothing but blocks of text separated by blank lines - t r off or
nr off will fill and justify those blocks of text into paragraphs for you. To get
further control over the layout of text, you have to use requests and functions
embedded in the text, and that is the subject of this entire paper on using
troff.

A word is any string of characters delimited by the space character or the begin­
ning or end of the input line. Any adjacent pair of words that must be kept
together (neither split across output lines nor spread apart in the adjustment pro­
cess) can be tied together by separating them with the unpaddable space charac­
ter '\ ' (backslash-space) - also called a 'hard blank' in other systems. The
adjusted word spacings are uniform in troff and the minimum interword
spacing can be controlled with the . ss (space size) request. In nroff, inter­
word spaces are normally nonuniform because of quantization to character-size
spaces, but the -e command line option requests uniform spacing to the full

~\sun ,~ microsystems
17 Revision A of 17 February 1986

18 Using nroff and troff on the Sun Workstation

2.1. Controlling Line Breaks

resolution of the output device. Multiple inter-word space characters found in
the input are retained, except for trailing spaces.

Filling and adjusting and hyphenation can all be prevented or controlled by
requests that are discussed later in this part of the manual.

An input text line ending with ., ?, or ! is taken to be the end of a sentence,
and an additional space character is automatically provided during filling.

A text input line that happens to begin with a control character can be made to
not look like a control line by prefacing it with the non-printing, zero-width filler
character \ &. Still another way is to specify output translation of some con­
venient character into the control character using the . tr (translate) request­
see the relevant section.

The text length on the last line output is available in the . n number register, and
text baseline position on the page for this line is in the n 1 number register. The
text baseline high-water mark on the current page is in the . h number register.

When filling is turned on, words of text are taken from input lines and placed on
output lines to make the output lines as long as they can be without overflowing
the line length, until something happens to break the filling process. When a
break occurs, the current output line is printed just as it is, and a new output line
is started for the following input text. There are various things that cause a break
to occur:

~\sun ,~ microsystems
Revision A of 17 February 1986

Chapter 2 - Line Format 19

Table 2-1 Constructs that Break the Filling Process

Construct Explanation

Blank liners) If your input text contains any completely blank lines, troff or nroff
assumes you mean them. So it prints the current output line, then your blank
lines, then starts the following text on a new line.

Spaces at the beginning of a line are significant. If there are spaces at the start of a
line, troff or nroff assumes you know what you are doing and that
you really want spaces there. Obviously, to achieve this, the current output
line must be printed and a new line begun. Avoid using tabs for this purpose,
since they do not cause a break.

A . br request A . br request (break) request can be used to make sure that the following
text is started on a new line.

troff or nroff requests Some troff or nroff requests cause a break in the filling process.

A \p Function

End offile

However, there is an alternate format of these requests which does not cause
a break. That is the format where the initial period character (.) in the
request is replaced by the apostrophe or single quote character ('). The list
of requests that cause a break appears in the table below this one.

When filling is in effect, the in-line \p function may be embedded or
attached to a word to cause a break at the end of the word and have the
resulting output line spread out to fill the current line length.

Filling stops when the end of the input file is reached.

Breaks caused by blank lines or spaces at the beginning of a line enable you to
take advantage of the filling and justification features provided by t r 0 f f or
nroff without having to use any troff or nroff requests in your text.

As mentioned in the table above in the item entitled "troff or nroff
requests" , there are some requests that cause a break when they are encountered.
The list of requests that break lines is short and natural:

~\sun ,~ microsystems
Revision A of 17 February 1986

20 Using nroff and troff on the Sun Workstation

Table 2-2 Formatter Requests that Cause a Line Break

. br - Break Lines

Command E~lanation

· bp Begin a new page
· br Break the current output line
· c e Center line(s)
· f i Start filling text lines
· nf Stop filling text lines
· sp Space vertically
· in Indent the left margin
· ti Temporary indent the left margin for the next line only

No other requests break lines, regardless of whether you use a . or a ' as the
control character. If you really do need a break, add a . br (break) request at
the appropriate place, as described below.

The . br (break) request breaks the current output line and stops filling that line .
Any new output will start on a new line.

Summary of the . br Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Continuation Lines and
Interrupted Text

break

.br

Not Applicable

cause break

Stop filling the line currently being collected and output the line without
adjustment. Text lines beginning with space characters and empty text lines
(blank lines) also cause a break.

The copying of an input line in noftil (non-fill) mode (see below) can be inter­
rupted by terminating the partial line with a \ c. The next encountered input
text line will be considered to be a continuation of the same line of input text.
Similarly, a word within filled text may be interrupted by terminating the word
(and line) with \c; the next encountered text will be taken as a continuation of
the interrupted word. If the intervening control lines cause a break, any partial
line will be forced out along with any partial word .

• \sun ,~ microsystems
Revision A of 17 February 1986

2.2. Justifying Text and
Filling Lines

. ad- Specify Adjusting
Styles

Chapter 2 - Line Format 21

To change the style of text justification, use the . ad (adjust) request to specify
one of the four different methods for adjusting text:

Table 2-3 Adjusting Styles for Filled Text

Adjusting
Indicator

.ad 1

.ad r

.ad c

.ad b

.ad n

.ad

Adjusting
Style

Left

Right
Center

Both
Normal
Reset

Description

Produces flush-left, ragged-right output, which
is the same as filling with no adjustment.
Produces flush-right, ragged-left output.
Centers each output line, giving both left and
right ragged margins.

Justifies both left and right margins.

Resumes adjusting lines in the last mode
requested.

It makes no sense to try to adjust lines when they are not being filled, so if filling
is off when a . ad request is seen, the adjusting is deferred until filling is turned
on again.

Summary of the . ad Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

adjust

.adc

. ad b - that is, adjust both margins.

Adjust in the last specified adjusting mode.

Adjust lines - if fill mode is off, adjustment is be deferred until fill mode is
back on. If the type indicator c is present, the adjustment type is changed as
shown in Table 2-3.

E (see Table A-2)

The current adjustment indicator c can be obtained from the . j number register.

The following figure illustrates the different appearances of filled and justified
text.

~\sun ,~ mlcrosystems
Revision A of 17 February 1986

22 Using nroff and troff on the Sun Workstation

This paragraph is filled and adjusted on both margins. This is the easiest formatting style to achieve
using nroff or troff because you don't have to place any requests in your text - you just type the
blocks of text into the input file and the formatter does something reasonably sane with them. Although
we specified nothing to get the paragraph filled and adjusted, we could have used an . ad b (adjust
both) request, or a . ad n (adjust normal) request - they both mean the same thing, namely, fill lines
and adjust both margins.

This paragraph is an example of 'flush left, ragged right' , which is what you get when you have filling
without adjusting - words are placed on the line to fill lines out as far as possible, but no interword
spaces are inserted so the right-hand margin looks ragged. This paragraph was formatted using an . ad
1 (adjust left) request, which has the same effect as using a . na (no adjust) request described later.

Then this paragraph is an illustration of text formatted as 'flush right, ragged left' - words are placed on
the line to fill lines out as far as possible, then the lines are made to line up on the right-hand margin, no
interword spaces are inserted, and so the left-hand margin looks ragged. This paragraph was formatted

using an . ad r (adjust right) request.

Finally, this paragraph is an instance of a formatting style called 'centered' adjusting, also known as
'ragged left, ragged right' - words are placed on the line to fill lines out as far as possible, then the lines
are centered so that both margins look ragged. This paragraph was formatted using an . ad c (adjust

center) request.

Figure 2-1 Filling and Adjusting Styles

. na - No Adjusting If you don't specify otherwise, troff or nroff justifies your text so that
both left and right margins are straight. This can be changed if necessary - one
way, as we showed above, is to use the . ad 1 request to get left adjusting only
so that the left margin is straight and the right margin is ragged. Another way to
achieve this same effect is to use the . na (no adjust) request. Output lines are
still filled, providing that filling hasn't also been turned off - see the . nf (no
fill) and . fi (fill) requests below. If filling is still on, troff or nroff pro­
duces flush left, ragged right output. To tum adjusting back on (return to the pre­
vious state), use the . ad request.

~\sun ~ microsystems
Revision A of 17 February 1986

Chapter 2 - Line Format 23

Summary of the . n a Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. nf and . f i-Turn Filling
Off and On

no adjust

.na

Adjusting is on by default

adjusting is turned off

Tum off adjustment - the right margin will be ragged. The adjustment type
for the . ad request is not changed. Output lines are still filled if fill mode is
on. To tum adjusting back on (return to the previous state), use the . ad
request.

E (see Table A-2)

The . nf (no fill) request turns off filling. Lines in the result are neither filled
nor adjusted. The output text appears exactly as it was typed in, complete with
any extra spaces and blank lines you might type - this is often called 'as-
is text', or 'verbatim'. No filling is mainly used for showing examples, espe­
cially in computer books where you want to show examples of program source
code.

You should be aware that traditional typesetting people have trouble with the
concept of no filling, because their typesetting systems are geared up to fiU and
adjust text all the time. When you ask for stuff to be printed exactly the way you
typed it, they have problems, especially when you want blank lines left in the
unfilled text exactly where you put them. In the world of typography, things that
don't fit into the Procrustean mold of filled text are often called 'displays' and
have to be handled specially.

The . f i (fill) request turns on filling. If adjusting has not been turned off by a
. na request, output lines are also adjusted in the prevailing mode set by any pre­
vious . ad request.

~\sun ,~ microsystems
Revision A of 17 February 1986

24 Using nroff and troff on the Sun Workstation

Summary of the . fi Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

fill

.fi

Filling is on by default

filling is turned on

Fill subsequent output lines. The number register . u is 1 in fill mode and 0
in nofill mode.

E,B (see Table A-2)

Summary of the . nf Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

2.3. Hyphenation

. nh and . hy - Control
Hyphenation

no fill

.nf

Filling is on by default

filling is turned off

Subsequent output lines are neither filled nor adjusted. Input text lines are
copied directly to output lines without regard for the current line length. The
number register . u is 1 in fill mode and 0 in nofill mode.

E,B (see Table A-2)

When troff or nroff fills lines, it takes each word in tum from the input text
line, and puts the word on the output text line, until it finds a word that will not
fit on the output line. At this point, t r 0 f f or nr 0 f f tries to hyphenate the
word. If possible, the first part of the hyphenated word is put on the output line
followed by a -, and the remainder of the word is put on the next line. We
should emphasize that, although the examples show text that is both filled and
justified, it is during filling that troff or nroff hyphenates words, not adjust­
ing.

If you have words in your input text containing hyphens (such as jack-in-the-box,
or co-worker), troff or nroff will, if necessary, split these words over two
lines, even if hyphenation is turned off .

Normally, when you invoke troff or nroff, hyphenation is turned on, but
you can change this. The . nh (no hyphenation) request turns off automatic
hyphenation. When hyphenation is turned off, the only words that are split over
more than one line are those that already contain hyphens. Hyphenation can be
turned on again with the . h Y (hyphenate) request.

.\sun ,~ microsystems
Revision A of 17 February 1986

Chapter 2 - Line Format 25

You can give. hy an argument to restrict the amount of hyphenation that troff
or nroff does. The argument is numeric. The request. hy 2 stops troff or
nroff from hyphenating the last word on a page .. hy 4 instructs troff or
nroff not to split the last two characters from a word; so, for example,
'repeated' will never be hyphenated 'repeat-ed' .. hy 8 requests the same thing
for the first two characters of a word; so, for example, 'repeated' will not be
hyphenated 're-peated'.

The values of the arguments are additive: . hy 12 makes sure that words like
'repeated' will never be hyphenated either as 'repeat-ed' or as 're-peated' .. hy
14 calls up all three restrictions on hyphenation.

A . hy 1 request is the same as the simple. hy request - it turns on hyphena­
tion everywhere. Finally, a . h Y 0 request is the same as the . nh request - it
turns off automatic hyphenation altogether.

Only words that consist of a central alphabetic string surrounded by (usually
null) non-alphabetic strings are considered candidates for automatic hyphenation.
Words that were input containing hyphens (minus), em-dashes (\ (em), or
hyphenation characters - such as mother-in-law - are always subject to split­
ting after those characters, whether or not automatic hyphenation is on or off.

Summary of the . nh Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

no hyphenation

.nh

Hyphenation is on by default

hyphenation is turned off

Tum automatic hyphenation off.

E (see Table A-2)

.\sun ~~ microsystems
Revision A of 17 February 1986

26 Using nroff and troff on the Sun Workstation

Summary of the . h y Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. h w - Specify Hyphenation
Word List

hyphenation

.hyN

Hyphenation is on by default in mode 1.

N=1.

Tum automatic hyphenation on for N;;:: 1, or off for N =0. If n = 1, all words
are subject to hyphenation. If N =2, do not hyphenate last lines (ones that
cause a trap). If N =4, do not hyphenate the last two characters of a word. If
N =8, do not hyphenate the first two characters of a word. These values are
additive - that is, N =14 invokes all three restrictions. Note: odd values of
N (except 1) don't make sense.

E (see Table A-2)

If there are words that you want tro f f or nrof f to hyphenate in some spe­
cial way, you can specify them with the . h w (hyphenate words) request. This
request tells troff or nroff that you have special cases it should know
about, for example:

.hw pre-empt ant-eater

Now, if either of the words 'preempt' or 'anteater' need to be hyphenated, they
will appear as specified in the . hw request, regardless of what troff or
nroff 's usual hyphenation rules would do. If you use the . hw request, be
aware that there is a limit of about 128 characters in total, for the list of special
words.

Summary of the . hw Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

hyphenate word

.hw word1 ...

None

Ignored

Specify hyphenation points in words with embedded minus signs. Versions
of a word with tenninal s are implied - that is, dig-it implies dig-its. This
list is examined initially and after each suffix stripping. The space available
is small - about 128 characters.

~\sun ~ microsystems
Revision A of 17 February 1986

. he - Specify Hyphenation
Character

Chapter 2 - Line Format 27

A hyphenation indicator character may be embedded in a word to specify desired
hyphenation points, or may precede the word to suppress hyphenation. For
example, hyphenation looks particularly disruptive if it occurs in titles. So, if
you had a long title like:

Input and Output Conventions and Character Translations,

you could shorten it, or you could insert the hyphenation character just before the
first character of each of the long words at the end of the title. The input might
look like this:

.H C "Input and Output Conventions and \%Character \%Translations"

(If you are using a reasonable line length, you don't need to worry about hyphe­
nation occurring earlier in the title in this example.)

Here is an example of using the hyphenation character to specify acceptable
hyphenation points within a word. The word "workstation" is often mis­
hyphenated because of the collection of consonants at the end of "work" and the
beginning of "station". So, your input might look like this:

work\%station

Summary of the . he Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

2.4. . C e - Center Lines of
Text

hyphenation character

.he c

\%

\%

Set hyphenation indicator character to c or to the default \ %. The indicator
does not appear in the output.

E (see Table A-2)

When we described "Filling and Adjusting", we showed how the text produced
by nroff or troff could be centered by using the . ad e request. Setting
text adjustment for centering is a fairly unusual way of getting centered text,
because the text is being filled at the same time. The more usual use for center­
ing is to have unfilled lines that are centered - that is, each line that you type is
centered within the output line. You get lines centered via the . ee (center)
request, which centers lines of text.

If you just use a . ee request without an argument, troff or nroff centers
the next line of text:

.ce

centers the following line of text, whereas:

Revision A of 17 February 1986

28 Using nroff and troff on the Sun Workstation

.ce 5

centers the following five lines of text. Filling is temporarily turned off when
lines are centered, so each line in the input appears as a line in the output, cen­
tered between the left and right margins. For centering purposes, the left margin
includes both the page offset (see later) and any indentation (also see later) that
may be in effect.

An argument of zero to the . ce request simply stops any centering that might
be in progress. So, if you don't want to count how many lines you want cen­
tered, you can ask for some large number of lines to be centered, then follow the
last of the lines with a • ce 0 request:

.ce 100

lines of text to be centered

.ce 0

The '100' in the example above could be any large number that you think is
bigger than the number of lines to center.

Note that the argument to the . ce request only applies to following text lines in
the input. Lines containing nroff or troff requests are not counted.

Summary of the . ce Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

2.5 .. ul and . cu­
Underline or Emphasize
Text

center

.ceN

Centering is off by default.

N=l

Center the next N input text lines within the current line (line-length minus
indent). If N=O, any residual count is cleared. A break occurs after each of
the N input lines. If the input line is too long, it is left adjusted.

E,B (see Table A-2)

There are times when you want to lend emphasis to a word in a piece of text.
The normal way to do this is to place the word or piece of text in italics if you
have an italic font, or underline the word if you don't have an italic font. The
. ul (underline) request underlines alphanumeric characters in nroff, and
prints those characters in the italic font in troff. As with the . ce request, a
. ul request with no argument underlines a single line of text, so:

~\sun ~ mlcrosyst8ms
Revision A of 17 February 1986

Chapter 2 - Line Format 29

.ul
following line of text

simply underlines the following line of text. Unlike. ee, though, . ul does not
tum filling off. A numeric argument to the . ul request specifies the number of
text lines you want underlined, so:

.ul 3

underlines the next three lines of text. As with centering, an argument of zero
. ul 0 cancels the underlining process.

Summary of the . u 1 Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

underline

.ulN

Underlining is off by default.

N=l

Underline in nroff (italicize in troff) the nextN input text lines. Actu­
ally, switch to underline font, saving the current font for later restoration;
other font changes within the span of a . ul will take effect, but the restora­
tion will undo the last change. Output generated by a . t 1 request is
affected by the font change, but does not decrement N. If N > 1, there is the
risk that a trap-interpolated macro may provide text lines within the span -
environment switching can prevent this.

E (see Table A-2)

Another form of underlining is called up with the . eu request, and asks for con­
tinuous underlining. This is the same as the . ul request, except that all char­
acters are underlined. Again, if you are using troff the characters are printed
in the italic font instead of underlined. There is a way to get characters under­
lined in troff, and this technique is explained later in this manual.

As with . ee, only lines of text to be underlined are counted in the number
given to the underline request. nroff or troff requests interspersed with
the text lines are not counted.

~\sun ,~ microsystems
Revision A of 17 February 1986

30 Using nroff and troff on the Sun Workstation

Summary of the . eu Request

~ D~~~

Mnemonic: continuously underline

Form of Request: • eu N

Initial Value: Underlining is off by default.

If No Argument: N= 1

Explanation: A variant of . ul that underlines every character in nroff. Identical to
. ul in troff.

Notes: E (see Table A-2)

2.6 .. uf - Underline Font nroff automatically underlines characters in the underline font, specifiable
with a . uf (underline font) request. The underline font is nonnally Times Italic
and is mounted on font position 2. In addition to the . ft (font) request and the
\fF, the underline font may be selected by the . ul (underline) request and the
. eu (continuous underline) request. Underlining is restricted to an output-
device-dependent subset of reasonable characters.

Summary of the . uf Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

underline font

.ufF

Italic

Italic

Set underline font to F. In nroff, Fmay not be on position 1 (initially
Times Roman).

~\sun ,~ microsystems
Revision A of 17 February 1986

3
Page Layout

Page Layout .. 33

3.1. Margins and Indentations .. 36

· po - Set Page Offset ... 36

· 11 - Set Line Length ... 36

· in - Set Indent ... 37

· t i-Temporarily Indent One Line .. 39

3.2. Page Lengths, Page Breaks, and Conditional Page Breaks 42

· pl - Set Page Length ... 42

· bp - Start a New Page ... 43

· pn - Set Page Number ... 44

· ne - Specify Space Needed .. 44

3.3. Multi-Column Page Layout by Marking and Returning 45

· mk - Mark Current Vertical Position .. 45

· rt - Return to Marked Vertical Position ... 46

3
Page Layout

Now we get into the subject of altering the physical dimensions of the layout of
text on a page. There are two major parts to page control, and they can be
roughly divided into controlling the horizontal aspects of lines, and controlling
the vertical aspects of the page dimensions.

Horizontal page control
Deals with subjects such as the location of the left margin, the location of
the right margin (the length of the line), and indentation of lines.

Vertical page control
Deals with the physical length of the page, when pages get started, and
whether there's enough room on the current page for a block of text. Page
numbering is also covered in this area.

These topics are covered in this section. We deal first with horizontal page con­
trol, then with the vertical aspects of page control.

We should explain how troff thinks of a page. The next page contains a
diagram of a page of text, and here we explain what some of the tenns mean:

Page Offset
is the distance from the physical edge of the paper to the place where all text
begins. In nonnal-world tenns, this distance is called the 'left margin'.
Nonnally you only set the page-offset at the very start of a fonnatting job
and you never change it again.

Line Length
is the distance from the left margin (or page-offset) to the right edge of the
text. The line-length is relative to the page-offset. In some respects, 'line­
length' is a bit of a misnomer, because once you have set the page-offset at
the start of the document (and assuming you never change it), the line-length
really nails down the position of the right margin and has little to do with
the length of the line.

Indent
is where the left edge of your text starts. Nonnally the indent is zero, so that
the edge of the text is where the page-offset is, but you can change the indent
so that the text starts somewhere else. Note that the line-length is not
affected by the indent - that is, indenting the text doesn't change the posi­
tion of the right margin.

33 Revision A of 17 February 1986

34 Using nroff and troff on the SUD Workstation

Page Length
is the distance from the extreme top of the page to the extreme bottom of the
page, that is, the page length is the physical length of the paper.

The following figure is a diagram of a page of text with the relevant parts pointed
out. This diagram is a scale-model of an 8.5 x II-inch sheet of paper, so while
the numbers quoted in the text below are expressed in 'real' units, the actual
dimensions are scaled.

~\sun ~~ microsystems
Revision A of 17 February 1986

Chapter 3 - Page Layout 35

left header center header right header

This paragraph has the page-offset set to give a left margin of approximately one inch (scaled). The
line-length is set to 6.5 inches (scaled). This means there is a one-inch (scaled) left margin and a one­
inch (scaled) right margin. The indent is set to zero so that the current left margin is at the same place
as the page-offset.

This paragraph has the page-offset and the line-length the same as the last paragraph, but
we've used a . in +0. 5i request to indent the left margin by half an inch - the current left
margin is now page-offset + indent. Note that the position of the right margin remains the
same as in the previous paragraph - only the left margin moved, so the effective length of the
lines is shorter.

This paragraph now has the left margin back to the original position because we inserted a . in
- 0 . 5 i request before it

This paragraph could have the left margin moved, not by indenting, but by changing the page-offset via
a . po +0. 5i request Now all text would be moved to the left, and because the line-length hasn't
changed, the right margin would move as well. The example can't show this because page offset is
measured from the margin, and because this example is in a box, changing the page offset within the
box is meaningless.

This is the regular old paragraph where the first line is indented and the rest of the text in the para­
graph is flushed to the left margin. The first line was indented via a . ti +0. 25i request to give a
temporary indent of the first line.
/

This paragraph is an example of an 'item' or 'bulletted' or 'hanging' paragraph, where the left
margin is moved to the right, and the 'bullet' or 'tag' is moved back to the old left margin. This
effect was achieved via a . in + 0 . 25 i request to move the left margin rightward, and then the
'bullet' was preceded by a . ti -0. 25i request to get a temporary indent to the old position of
the left margin.

Finally, note that tab stops are relative to the current left margin as we show here with a couple of
blocks of text with different indents. Note that the positions of the tab stops are shown with exclama­
tion point (!) characters:
!! !
You can see by the line of ! marks above where the tab stops are.

Now we have another block of text here but with the indent moved over a half-inch. As you
can see by the line of ! marks below, the tab stops have moved with the left margin:
! ! ! ! !

left footer center footer right footer

Figure 3-1 Layout of a Page

Revision A of 17 February 1986

36 Using nroff and troff on the Sun Workstation

3.1. Margins and
Indentations

. po - Set Page Offset

As we said above, the positions of the left-hand and right-hand margins are con­
trolled via the page-offset and the line-length. After that, any movements of the
left-hand margin are controlled via indent and temporary indent requests. These
topics are discussed in the following subsections .

The usable page width on the Graphic Systems phototypesetter is about 7.54
inches, beginning about 1127 inch from the left edge of the 8 inch wide, continu­
ous roll paper. The physical limitations on nroff output are output-device
dependent

The page-offset is the distance from the extreme left-hand edge of the paper to
the left margin of your text. When you use 'standard' 8.5xll-inch paper, it is
customary to have the left and right margins be one inch each, so that the physi­
cal length of the printed lines are 6.5 inches - or you'd say that the measure was
39 picas if you're a typographer and can't handle inches.

In general, you only set the page-offset once in the course of formatting a docu­
ment. Setting the page-offset determines the position of the physical left margin
for the text, and then you (almost) never change the page-offset again - all
indentation is done via . in (indent) requests and . ti (temporary indent)
requests. We talk about these requests later in this part of the manual.

The position of the physical right margin for the text is determined by the line­
length relative to the page-offset. The .11 (line length) request is discussed
below.

Summary of the . po Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. 11 - Set Line Length

page offset

.po±N

o in nroff, 26/27 inch in troff.

Previous value

Set the current left margin to ±N. In troff the initial value is 26/27 inch,
which provides about one inch of paper margin including the physical
typesetter margin of 1127 inch. In trof f the maximum (line­
length)+(page-offset) is about 7.54 inches. In nro f f the initial page-offset
is zero.

v (see Table A-2)

The current page-offset is available in the . 0 register.

troff gives you full control over the length of the printed lines. By the way,
typographers don't use terms like 'line-length', they use the word 'measure' to
mean the length of a line. They always measure vertical distances in 'picas'.

~\sun ,~ microsystelllS
Revision A of 17 February 1986

Chapter 3 - Page Layout 37

Nevertheless, to set the line-length in troff, use the .11 (line length)
request, as in

.11 6i

As with the . sp request, the actual length can be specified in several ways­
inches are probably the most intuitive unless you live in one of the very few
places in the world where they don't use inches.

The maximum line-length provided by the typesetter is 7.5 inches, by the way.
To use the full width, you have to reset the default physical left margin ('page­
offset'), which is normally slightly less than one inch from the left edge of the
paper. This is done by the . po (page offset) request discussed above .

. po 0

sets the offset as far to the left as it will go.

Note that the line-length includes indent space but not page-offset space. The
line-length minus the indent is the basis for centering with the . ce request. The
effect of the . 11 request is delayed, if a partially-collected line exists, until
after that line is output. In fill mode, the length of text on an output line is less
than or equal to the line-length minus the indent The current line-length is avail­
able in the . 1 number register. The length of three-part titles produced by a
. tl request (see Chapter 7, Titles and Page Numbering) is independent of the
line-length set by the . 11 request - the length of a three-part title is set by the
. 1 t request.

Summary of the .11 Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. in - Set Indent

line length

.11±N

6.5 inches

Previous value

Set the line-length to N where N is the value of the line length, or an incre­
ment or decrement for the line-length. In troff the maximum (line­
length)+(page-offset) is about 7.54 inches.

E, m (see Table A-2)

Given that you've got your page-offset and line-length correctly set for a docu­
ment to establish the position of the left and right margins, you now make all
other movements of the left margin via the . in (indent) request discussed here,
and via the . ti (temporary indent) request described below.

Revision A of 17 February 1986

38 Using nroff and troff on the Sun Workstation

The . in (indent) request indents the left margin by some specified amount from
the page-offset. This means that all the following text will be indented by the
specified amount until you do something to change the indent. To get only the
first line of a paragraph indented, you don't use the . in request, but you use the
. ti (temporary indent) request described below.

As an example, a common text structure in books and magazines is the 'quota­
tion' - a paragraph that is indented both on the right and the left of the line. A
quotation is used for precisely that purpose, namely to set some text off from the
rest of the copy. We can achieve such a paragraph by using the . in request to
move the left margin in, and the . 11 request to move the right margin leftward:

.in +O.Si

.11 -O.Si
I was to learn later in life that we tend to meet any new
situation by reorganizing; and a wonderful method
it can be for creating the illusion of progress
while producing confusion, inefficiency, and demoralization .
. 11 +O.Si
.in -O.Si

When you format the above construct you get a block that looks like this:

I was to learn later in life that we tend to meet any new situation
by reorganizing; and a wonderful method it can be for creating
the illusion of progress while producing confusion, inefficiency,
and demoralization.2

Notice the use of '+' and '-' to specify the amount of change. These change the
previous setting by the specified amount rather than just overriding it. The dis­
tinction is quite important: .11 +2. Oi makes lines two inches longer,
whereas .11 2. Oi makes them two inches long:

.11 2.0i
I was to learn later in life that we tend to meet any new
situation by reorganizing; and a wonderful method
it can be for creating the illusion of progress
while producing confusion, inefficiency, and demoralization.

I was to learn later in life that
we tend to meet any new situa­
tion by reorganizing; and a
wonderful method it can be for
creating the illusion of progress
while producing confusion,
inefficiency, and demoraliza­
tion.

2. Petronius Arbiter. A.D. 60 •

• \sun ,~ microsystems
Revision A of 17 February 1986

Chapter 3 - Page Layout 39

With . in, .11, and . po, the previous value is used if no argument is
specified. So, in the above example, the lines:

.li +O.Si

.in -O.Si

could have been

.li

.in

and would have had the same effect.

Note that the line-length includes indent space but not page-offset space. The
line-length minus the indent is the basis for centering with the . ce request. The
effect of the . in request is delayed, if a partially collected line exists, until after
that line is output. In fill mode the length of text on an output line is less than or
equal to the line-length minus the indent. The current indent is available in the
. i number register.

Summary of the . in Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

indent

.in±N

o
Previous value

Set the indent to ±N where N is the value of the indent, or an increment or
decrement on the current value of the indent. The . in request causes a
break.

Notes: E, m (see Table A-2)

. ti - Temporarily Indent The. ti (temporary indent) request indents the next text line by a specified
One Line amount.

A common application for . t i is where the first line of a paragraph must
be indented just like the one you're reading now. You get such a construct with a
sequence like:

.ti 3
A common application for ...

and when the paragraph is formatted, the first line of the paragraph is
indented by three specified units just like this one. Three of what? The default
unit for the . t i request, as for most horizontally-oriented requests - . 11
(line length), . in (indent), and . po (page offset) - is ems. An em is roughly

~\sun ,~ mlcrosystems
Revision A of 17 February 1986

40 Using nroff and troff on the Sun Workstation

the width of the letter 'm' in the current point size. Thus, an em is always pro­
portional to the point size you are using. An em in size p is the number of p
points in the width of an 'm'. Here's an em followed by an em dash in several
point sizes to show why this is a proportional unit of measure. You wouldn't
want a 20-point dash if you are printing the rest of a document in 12-point text.
Here's 12-point text:

m
I-I

Here's 16-point text:

m
I-I

And here's 20-point text:

I~
Thus a temporary indent of . t i 3 in the current point size results in an indent
of three m's width or Immmi.

Although inches are usually clearer than ems to people who don't set type for a
living, ems have a place: they are a measure of size that is proportional to the
current point size. If you want to make text that keeps its proportions regardless
of point size, you should use ems for all dimensions. Ems can be specified as
scale factors directly, as in . t i 2. Srn.

Lines can also be indented negatively if the indent is already positive:

.ti -O.3i

moves the next line back three tenths of an inch. A common text structure found
in documents is 'itemized lists' where the paragraphs are indented but are set off
by 'bullets' or some such. Item lists are often called 'hanging paragraphs'
because the first line with the item on it 'hangs' to the left. For example, you
could type the following series of lines like this (we've deliberately shortened the
length of the line to illustrate the effects):

Revision A of 17 February 1986

Chapter 3 - Page Layout 41

.11 4.0i

.in +O.2i

.ta +O.2i

.ce
Indent Control Requests

shorten lines for this example
indent left margin by afifth inch
set a tab for the hanging indent
center a line of title

· t i - 0 .2 i move left margin back temporarily
\ (butab the \fL\& .po\fP request sets the
page-offset to the desired amount thereby making
sure the left margin is correct.
· t i - 0 .2 i move left margin back temporarily
\ (butab the \fL\&. in\fP request sets the
indent from the left margin for all following text.
· t i - 0 .2 i move left margin back temporarily
\ (butab the \fL\&.ti\fP request sets the indent for
the following line of text only, thus providing for
fancy paragraph effects.

We had to play some tricks with tabs as well to get everything lined up, but that
won't affect the main point of the discussion. The tab markers in the lines above
show where there's a tab character, and the \ (bu sequence at the start of the
lines gets you a bullet (•) like that - we'll show the special character sequences
later in this manual. When you format the text as shown in the example above,
you get this effect:

Indent Control Requests
• the . po request sets the page-offset to the desired amount

thereby making sure the left margin is correct.
• the . in request sets the indent from the left margin for all

following text.
• the . t i request sets the indent for the following line of text

only, thus providing for fancy paragraph effects.

Remember that the line-length includes indent space but not page-offset space.
The effect of a . t i request is delayed, if a partially collected line exists, until
after that line is output. In fill mode the length of text on an output line is less
than or equal to the line-length minus the indent. The current indent is available
in the . i register.

Revision A of 17 February 1986

42 Using nroff and troff on the Sun Workstation

Summary of the . t i Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

3.2. Page Lengths, Page
Breaks, and Conditional
Page Breaks

. pI - Set Page Length

temporary indent

.ti±N

o
Ignored

Indent the next output text line a distance ±N with respect to the current
indent. The resulting total indent may not be negative. The current indent is
not changed. The . t i request causes a break.

E, m (see Table A-2)

Neither nroff nor troff provide any facilities for top and bottom margins
on a page, nor for any kind of page numbering at all. The -rns macro package
described in a previous section of this manual sets things up so that reasonable
pagination with top and bottom margins and page numbers are done automati­
cally.

If you want top and bottom margins when using raw troff or nroff, you
have to do some tricky stuff. The tricky stuff is done via traps and macros. The
trap tells troff or nroff when to do some processing for the margins (for
example, you might set a trap to start the bottom margin 0.75 inches from the
bottom of the page), and the macro defines what to do when the trap is sprung.
It is conventional to set traps for them at vertical positions 0 (top) and -N (N
from the bottom).

A pseudo-page transition onto the first page occurs either when the first break
occurs or when the first non-diverted text processing occurs. Arrangements for a
trap to occur at the top of the first page must be completed before this transition.

In the following tables, references to the current diversion mean that the mechan­
ism being described works during both ordinary and diverted output (the former
considered as the top diversion level). Refer to Chapter 10 for more information
on diversions.

Just as the . po, .11, . in, and . ti requests changed the horizontal aspects
of the page, the . pI (page length) request determines the physical length of the
page. In general you won't need to use the . pI request because the standard
setting is right for all but the most esoteric purposes.

~\sun ,~ microsystems
Revision A of 17 February 1986

Chapter 3 - Page Layout 43

Summary of the . p 1 Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. bp - Start a New Page

page length

.pl±N

11 inches

11 inches

Set page length to ±N. The intemallimitation is about 75 inches in troff
and about 136 inches in nroff. The current page length is available in the
. p number register.

v (see Table A-2)

Summary of the . bp Request

Item Description .

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

begin page

.bp±N

N=1

Increment current page number by 1.

Eject the current page and start a new page. If ±N is given, the new page
number will be ±N. Also see the . ns (no space) request. The . bp request
causes a break.

v (see Table A-2)

~\Slln ~~ microsystems
Revision A of 17 February 1986

44 Using nroff and troff on the Sun Worlcstation

. pn - Set Page Number

Summary of the . pn Request

~ D~~~

Mnemonic: page number

Formo/Request: .pn±N

Initial Value: N= 1

If No Argument: Ignored

Explanation: The next page (when it occurs) will have the page number±N. A . pn
request must occur before the initial pseudo-page transition to affect the page
number of the first page. The current page number is in the % register .

. ne - Specify Space Needed In some applications you need to make sure that a few lines of text all appear
together on the same page. There are several ways to achieve this ranging from
simple to complicated. One of the simplest ways is to use the . ne (need) verti­
cal space request:

.ne 3
some
lines
of
text
to
be
kept
on the
same page

specify we need at least three lines

The arrangement of the . ne request specifies that if there are many lines of text
in (say) a paragraph, at least three of the lines will appear together on the same
page, otherwise a new page will be started. The object of this exercise is to avoid
what typographers call 'orphans' - that is, the first line of a paragraph appearing
all alone and lonely on the bottom of a page, while the rest of the paragraph
appears on the next page. This is generally considered to be somewhat ugly and
should be avoided if possible. By itself, troff is too stupid to recognize the
existence of orphans (indeed of any text constructs at all), but the facilities are
there to avoid these situations. In general, macro packages such as the -ms
macro package discussed elsewhere have 'begin paragraph' macros such as . PP
which take care of controlling orphans .

• \sun ,~ microsystems
Revision A of 17 February 1986

Chapter 3 - Page Layout 45

Summary of the . ne Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

3.3. Multi-Column Page
Layout by Marking and
Returning

. mk - Mark Current
Vertical Position

need

.neN

Not applicable

tV

Need N vertical space. If the distance, D, to the next trap position is less than
N, a forward vertical space of size D occurs, which will spring the trap. If
there are no remaining traps on the page, D is the distance to the bottom of
the page. If D < V, another line could still be output and spring the trap. In a
diversion, D is the distance to the diversion trap, if any, or is very large.

v (see Table A-2)

It is possible to achieve multi-column output in troff or nroff via the .mk
(mark) and . rt (return) requests. Other useful special effects can also be
obtained using these requests, but one of the common uses is to do multi -column
output. Basically, the . mk request marks the current vertical position on the
page (you can place the result of the mark in a register). You do a column's
worth of output, then when you get to the end of the page, instead of starting the
next page, you return (via the . rt request) to the marked position, set up a new
indent and line-length, and crank out another column .

Summary of the . mk Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

mark

.mkR

Not applicable

R is an internal register

Mark the current vertical place in an internal register (both associated with
the current diversion level), or in register R, if given. See the . rt request.

~\sun ,~ microsystems
Revision A of 17 February 1986

46 Using nroff and troff on the Sun Workstation

. rt - Return to Marked
Vertical Position

Summary of the . rt Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

return

.rt±N

Not applicable

return to place marked by a previous . mk request

Return upward only to a marked vertical place in the current diversion. If ±N
(with respect to the current place) is given, the place is ±N from the top of
the page or diversion or, if N is absent, to a place marked by a previous
• mk. Note that the . sp request (refer to the chapter Line Spacing and
Character Sizes) may be used in all cases instead of . rt by spacing to the
absolute place stored in a explicit register; for example, using the sequence
.mkR sp -\nRu .

• \sun ,~ microsystems
Revision A of 17 February 1986

4
Line Spacing and Character Sizes

Line Spacing and Character Sizes ... 49

4.1. . sp - Space Vertically ... 49

4.2. . p s - Change the Size of the Type ... 50

4.3. . vs - Change Vertical Distance Between Lines 52

4.4. . 1 s - Change Line Spacing .. 54

4.5. \x Function - Get Extra Line-Space .. 54

4.6. . sv - Save Block of Vertical Space ... 54

4.7. . os - Output Saved Vertical Space .. 55

4.8. . ns - Set No Space Mode ~.. 56

4.9. . rs - Restore Space Mode .. 56

4.10. . ss - Set Size of Space Character .. 57

4.11. . cs - Set Constant-Width Characters .. 57

4.1. . sp - Space Vertically

4

Line Spacing and Character Sizes

You get extra vertical space with the . sp (space) request. A simple

.sp

request with no argument gives you one extra blank line (one . vS t whatever
that has been set to). Typically, that's more or less than you want, so . sp can
be followed by information about how much space you want-

.sp 2i

means 'two inches of vertical space' .

. sp 2p

means 'two points of vertical space'; and

.sp 2

means 'two vertical spaces' -two of whatever . vs is set to (this can also be
made explicit with . sp 2v); troff also understands decimal fractions in
most places, so

.sp 1.Si

is a space of 1.5 inches. These same scale factors can be used after the . v s
request to define line spacing, and in fact after most requests that deal with physi­
cal dimensions.

It should be noted that all size numbers are converted internally to 'machine
units', which are 11432 inch (116 point). For most purposes, this is enough reso­
lution that you don't have to worty about the accuracy of the representation. The
situation is not quite so good vertically, where resolution is 11144 inch (112
point) .

• \sun ~~ microsystems
49 Revision A of 17 February 1986

50 Using nroff and troff on the Sun Workstation

Summary of the . s p Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

4.2. . p s - Change the Size
of the Type

6 point: Pack my box with five dozen liquor jugs.
7 point: Pack my box with five dozen liquor jugs.

space

.spN

Not applicable

N=lV

Space vertically in either direction. If N is negative, the motion is backward
(upward) and is limited to the distance to the top of the page. Forward
(downward) motion is truncated to the distance to the nearest trap. If the
no-space mode is on, no spacing occurs (see . ns, and . rs below).

B, v (see Table A-2)

In troff, you can change the physical size of the characters that are printed on
. the page. The . ps (point size) request sets the point size. One point is 1172
inch, so 6-point characters are at most lII2-inch high, and 36-point characters are
1I2-inch. troff and the machine it was originally designed for understand 15
point sizes, listed below.

8 point: Pack my box with five dozen liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor jugs.
11 point: Pack my box with five dozen liquor jugs.
12 point: Pack my box with five dozen liquor jugs.
14 point: Pack my box with five dozen liquor jugs.
16 point: Pack my box with five dozen liquor jugs.
18 point: Pack my box with five dozen liquor jugs.
20 point: Pack my box with five dozen liquor jugs.
22 point: Pack my box with five dozen liquor jugs.
24 point: Pack my box with five dozen liquor jugs.
28 point: Pack my box with five dozen liquor

36 point: Pack my box with five doz
If the number after a . ps request is not one of these legal sizes, it is rounded up
to the next valid value, with a maximum of 36. If no number follows . ps,
troff reverts to the previous size, whatever it was. troff begins with point
size 10, which is usually fine. This document is in II-point.

~\sun ~~ microsystems
Revision A of 17 February 1986

Chapter 4 - Line Spacing and Character Sizes 51

The point size can also be changed in the middle of a line or even a word with an
in-line size change sequence. In general, text which is in ALL CAPITALS in the
middle of a sentence tends to loom large over the rest of the text and so it is cus­
tomary to drop the point size of the capitals so that it looks like ALL CAPITALS

instead. You use the \ s (for size) sequence to state what the point size should
be. You can state the size explicitly as in this line here:

The \s8POWER\sO of a \s8SUN\sO

to produce the output line like:

The POWER of a SUN

As above, \ s should be followed by a legal point size, except that \ s 0 makes
the size revert to its previous value (before you just changed it).

Note that because there are a fixed number of point sizes that the system knows
about, the sequence \ s 9 6 gets you a nine-point 6 instead of 96;JJoint type like you
wanted, whereas the sequence \ s 18 0 gets you an 18-point U instead of 180-
point type.

Stating the point size in absolute terms as above is not always a good idea -
what you really want is for the changed size to be relative to the surrounding text,
so that if your document is in 11-point type like this one, you'd really like the
bigger (or smaller stuff) to be a couple of points different without your having to
know explicitly what the actual size is. So in this case, you can use a relative
size-change sequence of the form \ s+ n to raise the point size, and \ s- n to
lower the point size. The number n is restricted to a single digit. So we can
rework our previous example from above like this:

The \s-2POWER\s+2 of a \s-2SUN\s+2

to produce the output line like:

The POWER of a SUN

Relative size changes have the advantage that the size difference is independent
of the starting size of the document. Of course this stuff only works really well
(in typography terms) when the changes in size aren't too violently out of whack
with the point size - a change of two points in 36-point type doesn't have quite
the same impact as it does for 12-point type - there is a question of the weight
of the type, but by the time you get to that stuff you'll be much more knowledge­
able about typography.

The current size is available in the . s number register. nroff ignores type
size control.

Revision A of 17 February 1986

52 Using nroff and troff on the Sun Workstation

Summary of the . p s Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

4.3. . v s - Change Vertical
Distance Between Lines

point size

.ps±N

10 points

Previous value

Set point-size to ±N. Alternatively embed \ sN or \ s±N. Any positive
size value may be requested; if invalid, the next larger valid size will result,
with a maximum of 36. The sequence

.ps +N

.ps N

works the same as

.ps +N

.ps -N

because the previous requested value is also remembered. Ignored in
nroff.

E (see Table A-2)

The other parameter that determines what the type looks like is the spacing
between lines, which is set independently of the point size. Vertical spacing is
measured from the bottom of one line to the bottom of the next. The bottom of
the text on a line is often called the baseline. The vertical spacing is often called
leading (pronounced 'led-ing') and comes from the days when text was pro­
duced with lead slugs instead of electronic widgets like laser printers.

You control vertical spacing with the . vs (vertical spacing) request. Forrun­
ning text, it is usually best to set the vertical spacing about 20% bigger than the
character size. For example, so far in this document, we have used II-point type
with a vertical line-spacing of 13 points between baselines. Typographers call
this'll on 13', so when you hear some one say that a book is set in 'lIon 13',
you know that it's II-point type with 13-point vertical spacing.

So, somewhere at the start of this document, the macro package that formats this
document for us had requests like:

.ps IIp

.vs 13p

Had we set the point size and the vertical spacing like this:

.ps IIp

.vs IIp

~~sun ~f{{P mlcrosystems
Revision A of 17 February 1986

Chapter 4 - Line Spacing and Character Sizes 53

the running text would look like this. After a few lines, you will agree it looks a
little cramped. The right vertical spacing is partly a matter of taste, depending on
how much text you want to squeeze into a given space, and partly a matter of
traditional printing style. By default, troff uses 10 on 12.

Point size and vertical spacing make a substantial difference in the amount
of text per square inch. This is 12 on 14.
Point size BOd vertical spacing make a substantial difference in the amount of text per equare inch. For example, 10 on 12 uses about twice as nmch
space as 7 on 8. This is 6 011. 7, which is even smaller. It packs ,lot more words per line, but you can go blind trying to read it.

When used without arguments, . ps and . vs revert to the previous size and
vertical spacing respectively.

The vertical spacing (V) between the base-lines of successive output lines can be
set using the . vs request with a resolution of 11144 inch = 112 point in troff,
and to the output device resolution in nroff. V must be large enough to
accommodate the character sizes on the affected output lines. For the common
type sizes (9-12 points), usual typesetting practice is to set V to 2 points greater
than the point size; troff default is 10-point type on a 12-point spacing. This
document is set in II-point type with a 13-point vertical spacing. The current V
is available in the . v number register.

Summary o/the . vs Request
Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

vertical spacing

.vsN

1

Previous value

Set vertical base-line spacing size V. Transient extra vertical space available
with \x'N' (see section on \x Function).

E, p (see Table A-2)

Revision A of 17 February 1986

54 Using nroff and troff on the Sun Workstation

4.4. . 1 s - Change Line
Spacing

Multiple-V line separation (for instance, double spacing) can be requested with
the . 1 s (line spacing) request.

Summary of the . 1 s Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

line spacing

.1sN

N=l

Previous value

Set line spacing to ±N. N-l V s (blank lines) are appended to each output
text line. Appended blank lines are omitted, if the text or previous appended
blank line reached a trap position.

E (see Table A-2)

4.5. \x Function - Get Extra
Line-Space

If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function
\x'N ' can be embedded in or attached to that word. In this and other functions
having a pair of delimiters around their parameter (here '), the delimiter choice
is arbitrary, except that it can't look like the continuation of a number expression
for N. If N is negative, the output line containing the word will be preceded by N
extra vertical space; if N is positive, the output line containing the word will be
followed by N extra vertical space. If successive requests for extra space apply
to the same line, the maximum values are used. The most recently used post-line
extra line-space is available in the . a register.

4.6. . s v - Save Block of
Vertical Space

A block of vertical space is ordinarily requested using the . sp (space) request,
which honors the no-space mode and which does not space past a trap. A con­
tiguous block of vertical space may be reserved using the . s v request (see
below) .

• \sun ,~ microsystems
Revision A of 17 February 1986

Chapter 4 - Line Spacing and Character Sizes 55

Summary of the . sv Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

4.7. . 0 s - Output Saved
Vertical Space

save space

.svN

Not applicable

N=lV

Save a contiguous vertical block of size N. If the distance to the next trap is
greater than N, N vertical space is output. No-space mode has no effect. If
this distance is less than N, no vertical space is immediately output, but N is
remembered for later output (see the . os request). Subsequent . sv
requests will overwrite any still-remembered N.

v (see Table A-2)

Summary of the . 0 s Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

output saved space

.os

Not applicable

Output saved vertical space

Output saved vertical space. No-space mode has no effect Used to finally
output a block of vertical space requested by an earlier . sv request.

Revision A of 17 February 1986

56 Using nroff and troff on the Sun Workstation

4.8 •. ns - Set No Space
Mode

Summary of the . ns Request

Item

Mnemonic: no-space mode

Form of Request: .ns

Initial Value: Not applicable

If No Argument: Tum on no-space mode

Description

Explanation: Tum on no-space mode - When on, the no-space mode inhibits . sp
requests and . bp requests without a next page number. The no-space mode
is turned off when a line of output occurs, or with . r s.

Notes:

4.9. . r s - Restore Space
Mode

D (see Table A-2)

Summary of the . rs Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

restore space mode

.rs

Not applicable

Tum off no-space mode

Restore spacing - tum off no-space mode.

D (see Table A-2)

Revision A of 17 February 1986

4.10. . s s - Set Size of Space
Character

Chapter 4 - Line Spacing and Character Sizes 57

Summary of the . s s Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argwnent:

Explanation:

Notes:

4.11. . c s - Set Constant­
Width Characters

space-character size

.ssN

12

Ignored

Set space-character size to N/36 ems~ This size is the minimum word spac­
ing in adjusted text. Ignored in nroff.

E (see Table A-2)

Summary of the . cs Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argwnent:

Explanation:

Notes:

constant spacing

.csFNM

Off

Ignored

Constant character space (width) mode is set on for font F (if mounted); the
width of every character is taken as N/36 ems. If M is absent, the em is that
of the character's point size; if M is given, the em is M-points. All affected
characters are centered in this space, including those with an actual width
larger than this space. Special Font characters occurring while the current
font is F are also so treated. If N is absent, the mode is turned off. The mode
must be still or again in effect when the characters are physically printed.
Ignored in nroff.

P (see Table A-2)

~\sun ,~ microsyst8ms
Revision A of 17 February 1986

5
Fonts and Special Characters

Fonts and Special Characters .. 61

5.1. . ft - Set Font ... 62

5.2. . fp - Set Font Position .. 63

5.3. . f z - Force Font Size ... 63

5.4. . bd - Artificial Bold Face .. 64

5.5. Character Set .. 65

5.6. Fonts .. 66

5.7. . 1 g - Control Ligatures ... 66

5
Fonts and Special Characters

troff and the typesetter allow four different fonts at anyone time. Nonnally
three fonts (Times roman, italic and bold) and one collection of special charac­
ters are pennanently mounted.

abcdefghijldmnopqrstuvwxyz 0123456789
ABCDEFGHll~OPQRSTUVVf.XYZ

abcdejghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGIIDKLMNOPQRSTUVWXYZ

The greek, mathematical symbols, and miscellany of the special font are listed in
Appendix B, Font and Character Examples.

troff prints in Roman unless told otherwise. To switch into bold, use the . ft
(font) request:

.ft B

and for italics,

.ft I

To return to roman, use . ft R; to return to the previous font, whatever it was,
use either . ft P or just . ft .

• \sun
• microsystems

61 Revision A of 17 February 1986

62 Using nroff and troff on the Sun Workstation

5.1. . ft - Set Font

Summary of the . ft Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

font

.ftF

Roman

Previous Font

Change font to F. Alternatively, embed \fF. The font name P is reserved
to mean the previous font.

E (see Table A-2)

The 'underline' request

.ul

makes the next input line print in italics. . ul can be followed by a count to
indicate that more than one line is to be italicized. Refer to Chapter 2 for a more
detailed description of the . ul request.

Fonts can also be changed within a line or word with the in-line request \f:

boldface text

is produced by the input

\fBbold\flface\fR text

If you want to do this so the previous font, whatever it was, is left undisturbed,
insert extra in-line \fP commands, like this:

\fBbold\fP\flface\fP\fR text\fP

Because only the immediately previous font is remembered, you have to restore
the previous font after each change or you lose it. The same is true of . p s and
. v s when used without an argument.

There are other fonts available besides the standard set, although you can still use
only four at any given time. The . fp (font position) request tells troff what
fonts are physically mounted on the typesetter:

.fp 3 H

says that the Helvetica font is mounted on position 3. Appropriate . fp requests
should appear at the beginning of your document if you do not use the standard
fonts .

• \sun ,~ microsystems
Revision A of 17 February 1986

5.2. . fp - Set Font Position

Chapter 5 - Fonts and Special Characters 63

It is possible to make a document relatively independent of the actual fonts used
to print it by using font numbers instead of names; for example, \f3 and . ft
3 mean 'whatever font is mounted at position 3' , and thus work for any setting.
Nonnal settings are Roman font (R) on font position 1, italic (I) on position 2,
bold (B) on position 3, and special (S) on position 4 - the mnemonic 'R I B S'
might help you remember.

Summary of the . fp Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

5.3. . f z - Force Font Size

font position

.fpNF

R, I, B, S

Ignored

Font position - this is a statement that a font named F is mounted on posi­
tion N (1-4). It is a fatal error if F is not known. The phototypesetter has
four fonts physically mounted. Each font consists of a film strip that can be
mounted on a numbered quadrant of a wheel. The default mounting
sequence assumed by troff is R, I, B, and S on positions 1,2,3 and 4.
Any . fp request specifying a font on some position must precede . f z
requests relating to that position.

Summary of the . f z Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

font size

.fz SFN

None

None

Forces font For S for special characters to be in size N. A . f z 3 -2
causes implicit \s-2 every time font 3 is entered, and a matching \s+2 when
left. Same for special font characters that are used during F. Use S to handle
special characters during F. . f z 3 -3 or . f z S 3 -0 causes
automatic reduction of font 3 by 3 points while special characters are not
affected. Any . fp request specifying a font on some position must precede
. f z requests relating to that position.

Revision A of 17 February 1986

64 Using nroff and troff on the Sun Workstation

5.4. . bd - Artificial Bold
Face

There is also a way to get 'synthetic' bold fonts by overstriking letters with a
slight offset. Look at the . bd request.

Summary of the . bd Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Form of Request:

Explanation:

Notes:

bold

.bdFN

Off

No Emboldening

Artificially embolden characters in font F by printing each one twice,
separated by N -1 basic units. A reasonable value for N is 3 when the charac­
ter size is in the vicinity of 10 points. If N is missing the embolden mode is
turned off. The mode must be still or again in effect when the characters are
physically printed. Ignored in nroff.,

.bd SFN

Embolden characters in the special font whenever the current font is F. The
mode must be still or again in effect when the characters are physically
printed.

P (see Table A-2)

Special characters have four-character names beginning with \ (, and they may
be inserted anywhere. For example,

is produced by

\(14 + \(12 = \(34

In particular, greek letters are all of the form \ (*x, where x represents an upper­
or lower-case roman letter reminiscent of the greek. Thus to get

in raw troff we have to type

\(*S(\(*a\(mu\(*b) \(-> \(if

That line is unscrambled as follows:

Revision A of 17 February 1986

5.5. Character Set

Chapter 5 - Fonts and Special Characters 65

Escape Character
Description

Sequence Printed

\(*S 1: Upper-case Sigma or Sum
((
\(*a a lower-case alpha
\ (mu x multiplication sign or signum
\(*b ~ lower-case beta
))
\(-> ~ tends toward
\(if 00 infinity

A complete list of these special names occurs in Appendix B, Font and Charac­
ter Examples.

In eqn, explained in the chapter Formatting Mathematics with eqn in Format­
ting Documents on the Sun Workstation, you can achieve the same effect with
the input

SIGMA (alpha times beta) -> inf

which is less concise (31 keystrokes instead of 27!), but clearer to the uninitiated.

Notice that each four-character name is a single character as far as traff is
concerned. For example, the translate request

.tr \(mi\(em

is perfectly clear, meaning

.tr - -

that is, to translate - (minus sign) into - (em-dash).

Some characters are automatically translated into others: grave ' and acute
accents (apostrophes) become open and close single quotes ' '; the combination
of " ... " is generally preferable to the double quotes" ... ". Similarly a typed
minus sign becomes a hyphen -. To print an explicit - sign, use \ -. To get a
backslash printed, use \e.

The traff character set consists of the Graphics Systems Commercial II char­
acter set plus a Special Mathematical Font character set - each having 102 char­
acters. These character sets are shown in Appendix B, Font and Character
Examples. All ASCII characters are included, with some on the Special Font.
With three exceptions, the ASCII characters are input as themselves, and non­
ASCII characters are input in the form \ (xx where xx is a two-character name
also explained in Appendix B. The three ASCII exceptions are mapped as fol­
lows:

.\sun ,~ microsystems
Revision A of 17 February 1986

66 Using nroff and troff on the Sun Workstation

Table 5-1

5.6. Fonts

Exceptions to the Standard ASCII Character Mapping

ASCII Input Printed by troff
Character Name Character Name

,
acute accent

,
close quote

.. grave accent
,

open quote
- minus - hyphen

The characters " ',and - may be input by \', \', and \ - respectively or
by their names found in Appendix B. The ASCII characters @, =It, ", " " <,
>, \, { , }, -, ... , and _ exist only on the Special Font and are printed as a
one-em space if that font is not mounted.

nroff understands the entire troff character set, but can in general print
only ASCII characters, additional characters as may be available on the output
device, such characters as may be constructed by overstriking or other combina­
tion, and those that can reasonably be mapped into other printable characters.
The exact behavior is determined by a driving table prepared for each device.
The characters " ',and _ print as themselves.

The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold
(B), and the Special Mathematical Font (S) on physical typesetter positions 1, 2,
3,.and 4 respectively. These fonts and others are used in this document. The
current font, initially Roman, may be changed (among the mounted fonts) by use
of the . ft request, or by embedding at any desired point either \ fx, \ f (xx,
or \ fN where x and xx are the name of a mounted font and N is a numerical font
position. It is not necessary to change to the Special font; characters on that font
are automatically handled. A request for a named but not-mounted font is
ignored. troff can be informed that any particular font is mounted by use of
the . fp request. The list of known fonts is installation-dependent. In the subse­
quent discussion of font-related requests, F represents either a one- or two­
character font name or the numerical font position, 1 through 4. The current font
is available (as numerical position) in the read-only number register . f.

nroff understands font control and normally underlines italic characters.

5.7 .. lg - Control Ligatures A ligature is a special way of joining two characters together as one. Way back
in the days before Gutenberg, scribes would have a variety of special forms to
choose from to make lines come out all the same length on a manuscript. Some
of these forms are still with us today.

Five ligatures are available in the current troff character set - fi, fI, ff, ffi,
andffl. They may be input (even in nroff)by \ (fi, \ (fl, \ (ff, \ (Fi,
and \ (Fl respectively.

The ligature mode is normally on in troff, and automatically invokes liga­
tures during input.

~\sun ~~ microsystems
Revision A of 17 February 1986

Chapter 5 - Fonts and Special Characters 67

If you want other ligatures like the re, re, JiB, andCE ligatures, you have to make
them up yourself - troff doesn't know about them. See Chapter 12 the sec­
tion on "Arbitrary Horizontal Motion" (the \ h function) for some examples on
constructing these ligatures.

Summary of the .lg Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

ligature

.1gN

Off in nroff, on in troff.

on

Turn Ligature mode on if N is absent or non-zero. Tum ligature mode off if
N=O. If N=2, only the two-character ligatures are automatically invoked.
Ligature mode is inhibited for request, macro, string, register, or file names,
and in copy mode. No effect in nroff.

~\sun ,~ microsystems
Revision A of 17 February 1986

6

Tabs, Leaders, and Fields

Tabs, Leaders, and Fields ... 71

6.1. . ta - Set Tabs ... 71

Setting Relative Tab Stops .. 72

Right-Adjusted Tab Stops .. 72

Centered Tab Stops .. 72

. t c - Change Tab Replacement Character ... 73

Summary of Tabs .. 74

6.2. Leaders - Repeated Runs of Characters .. 75

. 1 c - Change the Leader Character ... 77

6.3. . fc - Set Field Characters ... 78

6.1. . t a - Set Tabs

word-one word-two

6
Tabs, Leaders, and Fields

There are several ways to get stuff lined up in columns, and to achieve other
effects such as horizontal motion and repeated strings of characters. The three
related topics we discuss in this section are tabs, leaders, and fields.

tabs behave just like the tab stops on a typewriter.

leaders are for generating repeated strings of characters.

fields are a general mechanism for helping to line stuff up into
columns.

This part of the document concentrates on the 'easy' parts, so to speak. Later
sections of this document contain discussions on the facilities for drawing lines
and for producing arbitrary motions on the page.

Tabs (the ASCII horizontal tab character) can be used to produce output in
columns, or to set the horizontal position of output. Typically tabs are used only
in unfilled text. Tab stops are set by default every half inch from the current
indent (in troff) and every 0.8 inch from the current indent (in nroff), but
can be changed by the . ta (tab) request. In the example below, we set tab
stops every one-and-a-half inches and set some text in columns based on those
tab stops. We place a line of exclamation marks (!) above and below the text to
show where the tabs stops are in the output page:

.ta 1.Si 3.0i 4.Si 6.0i set tabs
! tab! tab ! tab! tab! show where tabs are with! character
word-one tab word-two tab word-three tab word-four tab word-five
! tab! tab! tab! tab!

When we fonnat the above example, we get this output:

word-three word-four word-five

71 Revision A of 17 February 1986

72 Using nroff and troff on the Sun Workstation

Setting Relative Tab Stops

Right-Adjusted Tab Stops

Centered Tab Stops

The tab stops set in the example above are in terms of absolute position on the
line. You could also set tabs relative to previous tabs stops by preceding the tab
stop number with a + sign, and get exactly the same result:

.ta 1.Si +l.Si +l.Si +l.Si set tabs
! tab ! tab ! tab ! tab ! show where tabs are with! character
word-one tab word-two tab word-threetabword-fourtabword-fi ve
!tab!tab!tab!tab!

In the standard case as shown in the above examples, the tab stops are left­
adjusted (as on a typewriter). You can also make the tab stops right-adjusting for
doing things like lining up columns of numbers. When you right-adjust a tab
stop, the action of placing a tab before the field places the material behind the
tab stop on the, output line. Here's an example of some input with both alpha­
betic and numeric items:

.nf

.ta 2.0iR
July tab 5
August tab 9
September tab 15
October tab 60
November tab 85
December tab 126
.fi

Notice the . ta request - it has the letter R on the end to indicate that this is a
right-adjusted tab. When we format that table, we get this result:

July 5
August 9
September 15
October 60
November 85
December 126

Notice how the numbers in the second column line up.

Finally you can make a centered tab stop, so that things get centered between the
tabs. We can use the centering tabs to put a title on our table from above:

.nf

.ta 2.0iC
Month tab Shipments
.ta 2.0iR
July tab 5
August tab 9
September tab 15
October tab 60
November tab 85
December tab 126
.fi

.\sun ,~ microsystems
Revision A of 17 February 1986

. tc - Change Tab
Replacement Character

,

Chapter 6 - Tabs, Leaders, and Fields 73

and when we format this table now, we get this result:

Month
July
August
September
October
November
December

Shipments
5
9

15
60
85

126

Notice that the column headings are centered over the data in the table.

If you have a complex table, instead of using troff or nroff directly, use
the tbl program described in the chapter "Formatting Tables with tbl" in
Formatting Documents on the Sun Workstation. A good example of where tb 1
does more work for you is when numerically-aligned items have decimal points
in them - it is really hard to do this using the raw troff or nroff capabili­
ties .

A tab inserts blank spaces between the item that came before and after it. You
can change this by filling up tabbed-over space with some other character. Set
the 'tab replacement character' with the . tc (tab character) request:

.ta 2.Si 4.Si

.tc
Name tab Age tab

This produces

Name ____________ Age

There is a more general mechanism for drawing lines, described in the sections
"Drawing Vertical Lines" and "Drawing Horizontal Lines" in the chapter Arbi­
trary Motions and Drawing Lines and Characters.

To reset the tab replacement character to a space, use the . t c request with no
argument. Lines can also be drawn with the in-line \ 1 command, described in
the chapter Arbitrary Motions and Drawing Lines and Characters.

Revision A of 17 February 1986

74 Using nroff and troff on the Sun Workstation

Summary of the . t c Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Summary of Tabs

tab character

. tc c

space

Removed

The tab repetition character becomes c, or is removed, specifying motion.

E (see Table A-2)

The table below is a summary of the types of tab stops. There are three types of
internal tab stops -left-adjusting, right-adjusting, and centering. In the follow­
ing table:

D

next-string

W

is the distance from the current position on the input line
(where a tab was found) to the next tab stop.

consists of the input characters following the tab up to the next
tab or end of line.

is the width of next-string.

Table 6-1 Types of Tab Stops

Tab Tab Length of motion or Location of
letter type repeated characters next-string

blank Left D Following D
R Right D-W Right adjusted within D
C Centered D-W/2 Centered on right end of D

~\sun ~~ microsystems
Revision A of 17 February 1986

Chapter 6 - Tabs, Leaders, and Fields 75

Summary of the . t a Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

6.2. Leaders - Repeated
Runs of Characters

tab

.taNt. ..

0.8 inches in nroff, 0.5 inches in troff.

Ignored

Set tab stops and types - N is the tab stop value and t is the type. t r 0 f f

tab stops are preset every 0.5 inches; nroff tab stops are preset every 0.8
inches. t=R means right-adjusting tabs, t=C means centering tabs, and if t is
absent, the tabs are left-adjusting tab stops. Stop values in the list of tab
stops are separated by spaces, and a value preceded by + is treated as an
increment to the previous stop value.

E, m (see Table A-2)

Leaders are repeated runs of the same character between tab stops. Leaders are
most often used to hang two separated pieces of text together. A common appli­
cation is in tables of contents. If you look at the contents for this manual you
will see that the chapter and section titles (on the left of the line) are separated
from the page number (on the right end of the line) by a row of dots. In fact here
is a short example to illustrate what the leaders look like:

Contents

2.0 Blunt Uses of Clubs .. 13
2.1 Social Clubs 16
2.2 Arthritic Clubs 18
2.3 Golf Clubs ... 25
2.4 Two-by-Four Clubs .. 29

The dots are called leaders, because they 'lead' your eye from one thing to the
other. It is not nearly so easy to read stuff like that if the leaders aren't there:

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

Contents

13
16
18
25
29

The leader character is normally a period, but it can in fact be any character you
like - some people prefer dots and some people prefer a solid line:

()~I! Revision A of 17 February 1986

76 Using nroff and troff on the Sun Workstation

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

Contents

13
16
18
25
29

A leader is very similar to a tab, but you get the repeated characters by typing an
in-line \a sequence instead of a tab or a \ t sequence. The \a sequence is a
control-A character or an ASCII SOH (start of heading) character and is hereafter
known as the leader character for the purposes of this discussion. When the
leader character is encountered in text it generates a string of repeated characters.
The length of the repeated string of characters is governed by internal tab stops
specified just as for ordinary tabs as discussed in the section on tabs above. The
major difference between tabs and leaders is that tabs generate motion and
leaders generate a string ofperiods. Let's look at a fragment of the text that gen­
erated the examples above:

.DS

.ta S.Oi-SnR S.OiR
2.0 Blunt Uses of Clubs \a\t13"

2.1 Social Clubs \a\t16"
2.2 Arthritic Clubs \a\t1S"
2.3 Golf Clubs \a\t2S"
2.4 Two-by-Four Clubs \a\t29"

.DE

What we're trying to get here are lines of text with the section numbers and the
titles, followed by a string of leader characters, followed by some space and then
the page number at the right-hand end of the line. Tables of contents tend to look
better with shorter line lengths, so we set our first tab to five inches minus five
en-spaces to leave a gap at the end of the leader. The second tab is set to a right­
adjusting tab at five inches. Each line of the table now contains the text to appear
on the left end, followed by a couple of spaces, followed by the \ a sequence to
indicated the leader, followed by the \ t sequence to indicate the tab, and finally
followed by the page number. The result of formatting all that stuff is:

2.0 Blunt Uses of Clubs .. 13
2.1 Social Clubs .. 16
2.2 Arthritic Clubs 18
2.3 Golf Clubs 25
2.4 Two-by-Four Clubs .. 29

• sun Revision A of 17 February 1986
~ microsystems

. Ie - Change the Leader
Character

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs

Chapter 6 - Tabs, Leaders, and Fields 77

Just as you could use the . t e request to change the character that gets generated
with tabs, you can use the . I e (leader character) request to specify the character
that is generated by a leader. The standard leader character is the period. We can
show this by taking our last fragment and placing a . Ie request before it to
change the leader character to an underline:

.DS

. Ie set leader character

. ta S. Oi-SnR S. OiR set tabs
2.0 Blunt Uses of Clubs \a\t13"

2.1 Social Clubs \a\t16"
2.2 Arthritic Clubs \a\t18"
2.3 Golf Clubs \a\t2S"
2.4 Two-by-Four Clubs \a\t29"

.DE

Then when we format the thing, it looks like this:

13
16
18
25

2.4 Two-by-Four Clubs 29

Whereas the length of generated motion for a tab can be negative, the length of a
repeated character string cannot be. Repeated character strings contain an integer
number of characters, and any residual distance is added before the leaders as
space. Tabs or leaders found after the last tab stop are ignored, but may be used
as next-string terminators.

Tabs and leaders are not interpreted in copy mode. \ t and \ a always generate
a non-interpreted tab and leader respectively, and are equivalent to actual tabs
and leaders in copy mode.

Summary of the . 1 c Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

leader character

.le c

Removed - successive \as act like tabs

The leader repetition character becomes c, or is removed. Successive leader
requests (\ as) act like tabs.

E (see Table A-2)

Revision A of 17 February 1986

78 Using nroff and troff on the Sun Workstation

6.3. . f c - Set Field
Characters

A field is a more general mechanism for laying out material between tab stops.
Hardly anyone ever needs to use fields, but the tbl preprocessor uses them for
placing tabular material on the page. This section is a very short discussion on
how to use fields. In general, when you want to layout tabular material you
should use tbl to do the job for you. Fields are a way of reducing the number
of tab stops you have to set, and also have troff or nroff do some
automatic work in parceling out padding space for you.

A field lives between the current position on the input line and the' next tab stop.
The start and end of the field are indicated by a field delimiter character.
troff or nroff places the field on the line and pads out any excess space
with spaces. You indicate where the padding actually goes by placing padding
indicator characters at various places in the field. You set the field delimiter
character and the padding indicator character with the . fc (field characters)
request. In the absence of any other information, troff or nroff has the
field mechanism turned off entirely. The . f c request looks like:

.fc dp

where d is the field delimiter character and p is the padding indicator character.
If you do not specify any character for a padding indicator, the space character is
the default. However, this means that you could not have spaces within the field,
so you normally specify the padding indicator as something other than a space.

So let's start with a very simple example of a single field and see what we get.
Here is the input:

• t a 3. 0 i set a single tab at three inches
• fc #: @ set field delimiter character to # and

set padding indicator character to @
! tab ! the! characters show where tabs are
#:string of characters#:
! tab ! the! characters show where tabs are
.fc

and here is the output after formattting:

string of characters
!

This is not very exciting - the characters in the field are simply left-adjusted in
the field, and the rest of the field up to the tab stop are padded with spaces. You
would get exactly the same result if you placed the padding indicator character at
the right end of the field to indicate that you wanted the padding on the right:

• ta 3. Oi set a single tab at three inches
· fc #: @ setfield delimiter character to #

set padding indicator character to @
! tab ! the! characters show where tabs are
#:string of characters@#:
! tab ! the! characters show where tabs are
.fc

As you can see, the result is identical to the one just above:

.~sun ,~ microsystems
Revision A of 17 February 1986

Chapter 6 - Tabs, Leaders, and Fields 79

!
string of characters
!

But now we can place a padding indicator character at the left end of the field
and get strings right-adjusted in the field:

.ta 3.0i

.fc # @

! tab!
#@string of characters#

set a single tab at three inches
setfuld delimiter character to #
set padding indicator character as @
the ! characters show where tabs are

#@another string of characters#
! tab ! the! characters show where tabs are
.fc

We used two strings of different length here to show how they are right-adjusted
against the tab stop:

string of characters
another string of characters

!

You can see how the spaces were placed on the left end of the field because that
is we where we placed the padding indicator character, and the strings got
adjusted right to the tab stop.

Then we can get fields centered by placing the padding indicator character at
both ends of the string:

.ta 3.0i

.fc # @

! tab!
#@string of characters@#

set a single tab at three inches
setfuld delimiter character to #
set padding indicator character as @
the! characters show where tabs are

#@longer string of characters@#
! tab ! the ! characters show where tabs are
.fc

Again we used two strings of different lengths to show the effect of centering the
field:

string of characters
longer string of characters

In general, a field or a sub-field between a pair of padding indicator characters is
centered in its space on the line.

Things get even more useful when you have multiple sub-fields in a field - the
padding spaces are then parceled out so that the sub-fields are uniformly left­
adjusted, right-adjusted, or centered between the current position and the next tab
stop:

~\sun ~~ microsystems
Revision A of 17 February 1986

80 Using nroff and troff on the Sun Workstation

string of characters
string of characters
!

left string
longer left string

.ta S.Oi

.fc # @
set a single tab at five incMS
set field delimiter character to /I
set padding indicator character as @

! tab ! use tM ! characters to show where tabs are
#string of characters#
#string of characters@another string#
! tab ! use the ! characters to show where tabs are

and here is the output after we fonnat that:

another string
!

And finally we can show three strings within a field, with the left part left­
adjusted, the center part centered, and the right part right-adjusted:

.ta S.Oi

.fc i @
! tab!
ileft string@center string@right stringi
ilonger left string@longer center string@longer right stringi
! tab!

and here is the output after we fonnat that:

center string
longer center string

right string
longer right string

!

So to summarize, a field is contained between a pair of field delimiter characters.
A field consists of sub-fields separated by padding indicator characters. The field
length is the distance on the input line from the position where the field begins to
the next tab stop. The difference between the total length of all the sub-fields and
the field length is incorporated as horizontal padding space that is divided among
the indicated padding places. The incorporated padding can be negative.

Revision A of 17 February 1986

Chapter 6 - Tabs, Leaders, and Fields 81

Summary of the . fc Request

Item Description

Mnemonic:

Form 01 Request:

Initial Value:

If No Argument:

Explanation:

field character

.fcl p

Field mechanism is off

Field mechanism is turned off.

Set the field delimiter to I; set the padding indicator to p (if specified) or to
the space character if p is not specified. In the absence of arguments, the
field mechanism is turned off .

• \sun ,~ microsystems
Revision A of 17 February 1986

7
Titles and Page Numbering

Titles and Page Numbering .. 85

7.1. Titles in Page Headers .. 85

7.2. Fonts and Point Sizes in Titles ... 87

7.3. .pe -Page Number Character ... 88

7.4. . t 1 Request - Three Parameters .. 89

7.1. Titles in Page Headers

7
Titles and Page Numbering

This is an area where things get tougher, because troff doesn't do any of this
automatically. Of necessity, some of this section is a cookbook, to be copied
literally until you get some experience.

Suppose you want a title at the top of each page, saying just

left top center top right top

There was a very early text formatter called roff, where you could say

.he 'left top'center top'right top'

.fo 'left bottom'center bottom' right bottom'

to get headers and footers automatically on every page. Alas, this doesn't work
in troff, which is a serious hardship for the novice. Instead you have to do a
lot of specification:

o You have to say what the actual title is (reasonably easy - you just use the
. tl request to specify the title).

o You have to specify when to print the title (also reasonably easy - you set a
trap to call a macro that actually does the work),

o and finally you have to say what to do at and around the title line (this is the
hard part).

Taking these three things in reverse order, first we define a . NP macro (for new
page) to process titles and the like at the end of one page and the beginning of the
next:

.de NP
'bp
'sp O.Si
.tl 'left top'center top' right top'
'sp O.3i

To make sure we're at the top of a page, we issue a 'begin page' request 'bp,
which skips to top-of-page (we'll explain the 'shortly). Then we space down
half an inch (with the 'sp o. Si request), and print the title (the use of . tl
should be self explanatory - later we will discuss the title parameters), space

.\sun ,~ microsystems
85 Revision A of 17 February 1986

86 Using nroff and troff on the Sun Workstation

another 0.3 inches (with the 'sp O. 3i request), and we're done.

To ask for . NP at the bottom of each page, we have to say something like 'when
the text is within an inch of the bottom of the page, start the processing for a new
page'. This is done with a 'when' request. wh:

.wh -li NP

See Chapter 10 for a more detailed description of the . wh request. No dot (.) is
used before NP in the when request because in this case, we're specifying the
name of a macro, not calling a macro. The minus sign means measure up from
the bottom of the page, so '-1 i' means one inch from the bottom.

The . wh request appears in the input outside the definition of . NP; typically
the input would be

.de NP
definition of the NP macro

.wh -li NP

Now what happens? As text is actually being output, troff keeps track of its
vertical position on the page. After a line is printed within one inch from the bot­
tom, the . NP macro is activated. In the jargon, the . wh request sets a trap at
the specified place, which is 'sprung' when that point is passed. . NP skips to
the top of the next page (that's what the 'bp was for), then prints the title with
the appropriate margins.

Why 'bp and 'sp instead of .bp and . sp? The answer is that .bp and
. sp, like several other requests, break the current line - that is, all the input
text collected but not yet printed is flushed out as soon as possible, and the next
input line is guaranteed to start a new line of output. If we had used . bp or
. sp in the . NP macro, a break would occur in the middle of the current output
line when a new page is started. The effect would be to print the left-over part of
that line at the top of the page, followed by the next input line on a new output
line, something like this:

last line but one at almost the bottom of the page
last line at the bottom of the

title on the bottom of the page

page break

title on the top of the next page

page.

Revision A of 17 February 1986

/
;~

Table 7-1

7.2. Fonts and Point Sizes in
Titles

Chapter 7 - Titles and Page Numbering 87

This is not what we want. Using 'instead of . for a request tells troff that
no break is to take place - the output line currently being filled should not be
forced out before the space or new page.

The list of requests that break lines is short and natural:

Requests that Cause a Line Break

Command Explanation

· bp Begin a new page
· br Break the current output line
· ce Center line(s)
· f i Start filling text lines
· n f Stop filling text lines
· sp Space vertically
· in Indent the left margin
· t i Temporary inden~ the left margin for the next line only

No other requests break lines, regardless of whether you use a . or a '. If you
really do need a break, add a . br (break) request at the appropriate place.

One other thing to beware of - if you're changing fonts or point sizes a lot, you
may find that if you cross a page boundary in an unexpected font or size, your
titles come out in that size and font instead of what you intended. Furthermore,
the length of a title is independent of the current line length, so titles will come
out at the default length of 6.5 inches unless you change it, which is done with
the . 1 t (length of title) request.

Summary of the . 1 t Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

length of title

.1t±N

6.5 inches

Previous value

Set length of title to ±N. The line-length and the title-length are independent.
Indents do not apply to titles; page-offsets do.

E, m (see Table A-2)

There are several ways to fix the problems of point sizes and fonts in titles. For
the simplest applications, we can define the ~ NP macro to set the proper size
and font for the title, then restore the previous values, like this:

~\sun
~ microsystems

Revision A of 17 February 1986

88 Using nroff and troff on the Sun Workstation

7 .3. . pc - Page Number
Character

.de NP
'bp
'sp O. 5i
. ft R \" set title font to roman
.ps 10 \" and size to 10 point
.It 6i \" and length to 6 inches
.tl 'left'center'right'
.ps \" revert to previous size
.ft P \" and to previous font
'sp O. 3i

This version of . NP does not work if the fields in the . t 1 request contain size·
or font changes. What we would like to do in cases like this is remember the
status of certain aspects of the environment, change them to meet our needs for
the time being, and then restore them after we're done with the special stuff.
This requirement is satisfied by troff's environment mechanism discussed in
Chapter 17, Environments.

To get a footer at the bottom of a page, you can modify . NP so it does some
processing before the 'bp request, or split the job so that there is a separate
footer macro invoked at the bottom margin and a header macro invoked at the
top of the page.

Output page numbers are computed automatically as each page is produced
(starting at 1), but no numbers are printed unless you ask for them explicitly. To
get page numbers printed, include the character % in the . t 1 line at the posi­
tion where you want the number to appear. For example

. tl "- % -"

centers the page number inside hyphens.

You can change the page number character with the . pc request.

Summary of the . pc Request

Item

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

page-number character

.pc c

%

Off

Description

Set the page-number character to c, or remove it if there is no c argument.
The page-number register remains %.

You can set the page number at any time with either . bp n, which immediately
starts a new page numbered n, or with . pn n, which sets the page number for

Revision A of 17 February 1986

(

7.4. . t 1 Request - Three
Parameters

Hunting the Snark

Chapter 7 - Titles and Page Numbering 89

the next page but doesn't skip to the new page. Again, . bp +n sets the page
number to n more than its current value; . bp means . bp + 1.

The . t 1 (title) request automatically places three text fields at the left, center,
and right of a line (with a title-length specifiable via the .1 t (length of title)
request. The most common use for three-part titles is to put running headers and
footers at the top and bottom of pages just like those in this manual. In fact, the
. t 1 request may be used anywhere, and is independent of the normal text col­
lecting process. For example, we just placed a three-part title right here in the
text:

-89- Smiles and Soap

by typing the a three-part title request that looks like:

.tl 'Hunting the Snark'- % -'Smiles and Soap'

and you might noti~e that the page number in the formatted example is the same
as the page number for this page.

Summary of the . t 1 Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

title

. t 1 'left' center' right'

Nothing

Nothing

The strings in the left, center, and right fields are respectively left-adjusted,
centered, and right-adjusted in the current title-length. Any of the strings
may be empty, and overlapping is permitted. If the page-number character
(initially %) is found within any of the fields it is replaced by the current
page number having the format assigned to register %. Any character may
be used as the string delimiter.

~\sun ~ microsystems
Revision A of 17 February 1986

8
traff Input and Output

troff Input and Output .. 93

8.1. . so - Read Text from a File ... 93

8.2. . nx - Read Next Source File .. 95

8.3. Pipe Output to a Specified Program (nroff only) 95

8.4. . rd - Read from the Standard Input .. 96

8.5. . ex - Exit from nroff or troff ... 98

8.6. . tm - Send Messages to the Standard Error File 98

8.1. . so - Read Text from a
File

8
t ro f f Input and Output

We now describe two troff requests that we omitted earlier, because their use­
fulness is more apparent when you understand the troff command line. Nor­
mally troff takes its input from the files given when it is called up. However
there are ways in which the formatter can be made to take part of its input from
elsewhere, using tro f f requests embedded in the document text.

The . so request, which tells troff to switch over and take its source from the
named file. For example, suppose you have a set of macros that you have
defined, and you have them in a file called macros. We can call them up from
the troff command line:

hostname% troff macros document
hostname%

as we showed earlier, but it's a bit of a nuisance having to do this all the time.
Also, if only some of our documents use the macros, and others don't, it can be
difficult to remember which is which. An alternative is to make the first line of
the document file look like this:

.so macros

Now we can format the document by:

hostname% troff document
hostname%

The first thing troff sees in the file document is the request. so macros
which tells it to read input from the file called macros. When it finishes taking
input from macros, troff continues to read the original file document.

Another way of using the . so request lets you format a complete document, held
in several files, by only giving one filename to the troff command. Let us
create a file called document containing:

~\sun ~~ microsystems
93 Revision A of 17 February 1986

94 Using nroff and troff on the Sun Workstation

.so macros

.so section.l

.so section.2

.so section.3
and so on through the document until . ..

. so appendix.C

We can now format it with the troff command line:

hostname% troff document I Ipr
hostname%

This is a lot easier than typing all the filenames each time you format the docu­
ment, and a lot less prone to error.

This technique is especially useful if your filenames reflect the contents of the
various sections, rather than the order in which they appear. For instance, look at
this file which describes a whole book (something like the one you are reading):

hostname% cat book
.so bookmacros
.so preface
.so intro
.so login
.so directs
.so stdio

\"Getting Started on the UNIX System
\"Directories and the File System
\ "Commands , Processes, and Standard Files

<etc ... >
.so biblio \"Bibliography
hostname%

It is obviously much easier to format the whole thing with a troff command
line like this:

hostname% troff book I Ipr
hostname%

than it would be if you had to supply all the filenames in the right order. Notice
that we used the comment feature oftroff to tie chapter titles to filenames.

~\Slln ,~ mlcrosystems
Revision A of 17 February 1986

Chapter 8 - troff Input and Output 95

Summary of the . so Request

Item Description

Mnemonic:

Form of Request:

Explanation:

source

· so filename

Switch source file - the top input (file reading) level is switched to filename.
The sourced-in file is read directly and processed immediately when the
· so line is encountered. When the new file ends, input is again taken from
the original file. . S os may be nested.

8.2. . nx - Read Next Source
File

Summary of the . nx Request

Item Description

Mnemonic:

Form of Request:

If No Argument:

Explanation:

8.3. Pipe Output to a
Specified Program
(nroff only)

next

· nxfilename

end-of-file

Next file is filename. The current file is considered ended, and the input is
immediately switched to filename. There is no return to the file containing
the . nx command.

A couple of examples of programs you might want you pipe your nroff output
to are lpr and col. Your source line might look like this:

.pi /usr/ucb/lpr

or

.pi /usr/bin/col

if you had formatted tables in your source file.

Summary of the . pi Request

Item Description

Mnemonic:

Form of Request:

Explanation:

pipe

.piprogram_name

Pipe output to program (nroff only). This request must occur before any
printing occurs. No arguments are transmitted to program.

~j\sun
,~ microsystems

Revision A of 17 February 1986

96 Using nroff and troff on the Sun Workstation

8.4. . rd - Read from the
Standard Input Another troff request that switches input from the file you specify is the . rd

(read) request. In UNIX, the standard input can be the user's keyboard, a pipe, or
a file. The . r d request reads an insertion from the standard input. When
troff encounters the . rd request, it prompts for input by sounding the termi­
nal bell or flashing the screen. A visible prompt can be given by adding an argu­
ment to . rd, as we show in the example below.

Everything typed up to a blank line (two newline characters in a row) is inserted
into the text being formatted at that point. This can be used to 'personalize' form
letters. If you have an input file with this text:

.po 10

.nf

.in 20
14th February
.in 0
Dear
.rd who

Will you be my Valentine?
If you will, give me a sign
(I like roses, I like wine) .

then when you format it, you will be prompted for input:

hostname% troff valentine I lpr
who:Peter

hostname%

After typing the name Peter you have to press the RETURN key twice, since
troff needs a blank line to end input. The result of formatting that file is:

Dear
Peter

14th February

Will you be my Valentine?
If you will, give me a sign
(I like roses, I like wine) .

To get another copy of this for Bill, you just run the troff command again:

hostname% troff valentine I lpr
who:Bill

hostname%

and again for Joe, and for Manuel, and Louis, and Alphonse, and ...

Since troff takes input from the terminal up to a blank line, you are not limited
to a single word, or even a single line of input. You can use this method to insert
addresses or anything else into form letters.

~~sun ~~ microsystems
Revision A of 17 February 1986

Chapter 8 - troff Input and Output 97

Summary of the . rdRequest

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

read

.rdprompt

Not applicable

prompt=BEL

Read insertion from the standard input until two newlines in a row are found.
If the standard input is the user's keyboard, prompt (or a BEL) is written onto
the user's terminal. . rd behaves like a macro, and arguments may be
placed after prompt. Use the standard way to access arguments in macros
(see Chapter lq.

If insertions are to be taken from the terminal keyboard while output is being
printed on the terminal, the command line option -q will tum off the echoing of
keyboard input and prompt only with BEL. The regular input and insertion input
cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the
insertions for all the copies in one file to be used as the standard input, and caus­
ing the file containing the letter to reinvoke itself using . nx (see the previous
section); the process would ultimately be ended by a . ex in the insertion file.
Example:

Letter File
Dear
.rd

.nx Letter

Names File
John

blank line
Bill
blank line
.ex

To put everything together, you could use:

hostname% cat Names I troff Letter

~\sun ,~ microsystems
Revision A of 17 February 1986

98 Using nroff and troff on the Sun Workstation

8.5 .. ex - Exit from nroff
or troff

Summary o/the . ex Request

Item Description

Mnemonic:

Form of Request:

Explanation:

8.6. . tm - Send Messages to
the Standard Error File

exit

. ex prompt

Exit from nroff or troff. Text processing is terminated exactly as if
all input had ended.

The . tm (terminal message) request displays a message on the standard error
file. The request looks like:

.tm tell me some good news

and when troff or nroff encounters this in the input file, it displays the
string

tell me some good news

on the standard error file. This request has been used in older versions of the
-ms macro package to rebuke the user when (for instance) an abstract for a paper
was longer than a page. Other macro packages use the . tm request for assisting
in generating tables of contents and indices and such supplementary material.

Summary o/the . tmRequest
Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

terminal message

. tmstring

Not applicable

Display a newline

After skipping initial blanks, string (rest of the line) is read in copy mode and
written on the user's terminal .

• \sun
~ microsystems

Revision A of 17 February 1986

9

Strings

Strings ... 101

9.1. . ds - Define Strings .. 101

9.2. . as - Append to a String .. 103

9.3. Removing or Renaming String Definitions .. 105

9.1. . ds - Define Strings

9
Strings

Obviously if a paper contains a large number of occurrences of an acute accent
over a letter 'e', typing \ 0" e \ ' " for each e would be a great nuisance. (See
Chapter 12 for more detailed information on drawing lines and characters.

Fortunately, troff provides a way that you can store an arbitrary collection of
text in a string, and thereafter use the string name as a shorthand for its contents.
Strings are one of several troff mechanisms whose judicious use lets you type
a document with less effort and organize it so that extensive format changes can
be made with few editing changes. A reference to a string is replaced in the text
by the string definition.

A string is a named sequence of characters, not including a newline character,
that may be interpolated by name at any point in your text. Note that names of
trof f requests, names of macros, and names of strings all share the same name
list. String names may be one or two characters long and may usurp previously­
defined request, macro, or string names.

You create a string (and give it an initial value) with the . ds (define string)
request. You can later add more characters to the end of the string by using the
. as (append to string) request.

String names may be either one or two characters long. You get the value of a
string placed in the text, where it is said to be interpolated, by using the notation:

*x

for a one-character string named x, and the more complicated notation:

* (.u

for a two-character string named .xx .

String references and macro invocations may be nested.

You create a string (and define its initial value) with the . ds (define string)
request The line

.ds e \o"e\'"

defines the string e to have the value \ 0 " e \ ,,,

.\sun ~~ microsystems
101 Revision A of 17 February 1986

102 Using nroff and troff on the Sun Workstation

You refer to them with the sequence \ * x for one-character names or \ * (xy
for two-character names. Thus, to get telephone, given the definition of the
string e as above, we can say t*el*ephone.

As another live example, in the section on ligatures in Chapter 5, Fonts and Spe­
cial Characters, we noted that troff doesn't know about the Scandinavian
ligatures - you have to decide for yourself how to define them. Here are our
definitions of the strings for those ligatures:

.ds ae a\h'-(\w'a'u*4/10)'e

.ds Ae A\h'-(\w'A'u*4/10)'E

.ds oe o\h'-(\w'o'u*4/10)'e

.ds Oe O\h'-(\w'O'u*4/10)'E

See the section entitled "\ h Function - Arbitrary Horizontal Motion" in
Chapter 12 for a discussion on what the \ h constructs are doing in the string
definitions above. Having defined the strings, all you have to do is type the
string references like this:

... the Scandinavian ligatures \ * (oe, \ * (ae, \ * (Oe, and \ * (Ae ...

in order to get ... the Scandinavian ligatures re, re, CE, and IE ... into your
stream of text.

If a string must begin with spaces, define it as

.ds xx " text

The double quote character signals the beginning of the definition. There is no
trailing quote - the end of the line terminates the string.

A string may actually be several lines long; if trof f encounters a \ at the end
of any line, the backslash and the newline characters are disregarded resulting in
the next line being added to the current one. So you can make a long string sim­
ply by ending each line except the last with a backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other strings, or even in terms of themselves.

~\sun ,~ microsystems Revision A of 17 February 1986

Chapter 9 - Strings 103

Summary of the . ds Request

Item Description

Mnemonic:

Form oj Request:

Initial Value:

If No Argument:

Explanation:

9.2. . as - Append to a
String

define string

• ds xx string

Not applicable

Ignored

Define a string xx containing string. Any initial double-quote in string is
stripped off to permit initial spaces.

The . as (append to string) request adds characters to the end of a string. You
use the . as request like this:

. as xx string-oJ-characters

where string-oj-characters is appended to the end of whatever is already in the
string xx.

Note that the string mentioned in a . as request is created if it didn't already
exist, so in that respect an initial . a s request acts just like a . ds request.

For example, here's a short fragment from the . H macro that was used to gen­
erate the section numbers in this document. The . H macro is called up like

• H level-number "Text of the Title"

where level-number is 1,2, 3, ... to indicate that this is a first, second,
third, ... level heading. The . H macro keeps track of the various section
numbers via a bunch of number registers H1 through H5, and they are tested for
and appended to the SN string if appropriate. For example:

· ds SN \ \n (HI. set the initial section number string
· if \ \n (NS>I • as SN \ \n (H2. append H2 ifneeded
· if \ \n (NS>2 . as SN \ \n {H3. append H3 ifneeded
· if \ \n (NS>3 . as SN \ \n {H4. append H4 ifneeded
· if \ \n {NS>4 . as SN \ \n {H5. appendH5 ifneeded

more processing to compute indentations and such . ..

*(SN\\ \\ \t\c
\&\\$2

and yet more processing . ..

~\sun ~~ microsysterns

Now output the text

Revision A of 17 February 1986

104 Using nroff and troff on the Sun Workstation

Let's unscramble that mess. The essential parts are the initial line that says:

.ds SN \\n(Hl. set the initial section number string

which sets the SN (section number) string to the value of the HI number register
that counts chapter level numbers. Then the following four lines essentially all
perform a test that says:

. if the level-number is greater than N, append the next higher sec­
tion counter to the string. That is, if the current section number is
greater than 2, we append the value of the level 3 counter, then if the
section number is greater than 3, we append the value of the level 4
counter, and so on.

Finally, the built-up SN string, followed by the text of the title, gets placed into
the output text with the lines that read:

*(SN\\ \\ \t\c
\&\\$2

Now output the text

And in fact we can use the mechanisms that exist to play games like that because
we are using a macro package to format this document, and those number regis­
ters are available to us. So we can define a string like this:

.ds XX \n(Hl.

and interpolate that string like this:

*(XX

to get the value

9.

printed in the text. Now we can append the rest of the section counters to that
XX string like this (without caring whether they have any values):

.as xx \n(H2.\n(H3.\n(H4.\n(H5.

and then when we interpolate that string we get this:

9.2.0.0.0.

which, if you look, should be the section number of the stuff you are now read­
ing.

~\sun ,~ microsystems
Revision A of 17 February 1986

Chapter 9 - Strings 105

Summary of the . as Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanatiort:

9.3. Removing or Renaming
String Definitions

append to string

. a s xx string

Not applicable

Ignored

Append string to string xx (append version of . ds). The string xx is created
if it didn't already exist.

Strings (just like macros) can be renamed with the . rn (rename) request, or can
be removed from the namelist with the . rm (remove) request. Refer to Chapter
10 for more detailed descriptions of the . rn and. rm commands.

Revision A of 17 February 1986

10
Macros, Diversions, and Traps

Macros, Diversions, and Traps ... 109

10.1. Macros ... 109

· de - Define a Macro ... 109

· rm - Remove Requests, Macros, or Strings .. 111

· r n - Rename Requests, Macros or Strings (... 112

Macros Witll Arguments .. 112

· am-Append to a Macro .. 116

Copy Mode Input Interpretation ... 116

10.2. Using Diversions to Store Text for Later Processing 116

· di - Divert Text ... 117

· da - Append to a Diversion ... 118

10.3. Using Traps to Process Text at Specific Places on a Page 119

• wh - Set Page or Position Traps ... 119

· ch - Change Position of a Page Trap ... 120

· dt - Set a Diversion Trap ... 120

· it - Set an Input.;;Line Count Trap .. 120

· em - Set tlle End of Processing Trap ... 122

10.1. Macros

. de - Define a Macro

10
Macros, Diversions, and Traps

Before we can go much further in nroff or troff, we need to learn something
about the macro facility. In its simplest form, a macro is just shorthand notation
similar to a string. A macro is a collection of several separate troff commands
which, when bundled together, achieves (sometimes complex) formatting when
the macro is invoked. Whereas a string is somewhat limited because its
definition is specific, a macro can interpret arguments that can change its
behavior from one invocation to the next.

A macro is a named set of arbitrary lines that may be invoked by name or with a
trap. Macros are created by . de and . di requests, and appended to by . am
and . da requests; . di and . da requests cause normal output to be stored in a
macro. A macro is invoked in the same way as a request; a control line beginning
. xx interpolates the contents of macro xx. The remainder of the line may contain
up to nine arguments. Request, macro, and string names share the same name
list. Macro names may be one or two characters long and may usurp previously­
defined request, macro, or string names. String references and macro invocations
may be nested. Any of these entities may be renamed with a . r n request or
removed with a . rm request.

Suppose we want every paragraph to start in exactly the same way - with a
space and a temporary indent of two ems. We show a (very simplified) version
of the . PP (paragraph) macro from the -IDS macro package:

.sp

.ti +2m

Then to save typing, we would like to collapse these into one shorthand line, a
troff 'request' like

.PP

that would be treated by t ro f f exactly as if you had typed:

.sp

.ti +2m

• PP is called a macro. The way we tell troff what . PP means is to define it
with the . de (define) request:

.\sun ~~ microsystems
109 Revision A of 17 February 1986

110 Using nroff and troff on the Sun Workstation

.de PP

.sp

.ti +2m

The first line names the macro (we used . PP) which is a standard macro nota­
tion for 'paragraph'. It is common practice to use upper-case names for macros
so that their names don't conflict with ordinary troff requests. The last line
. . marks the end of the definition. In between the beginning and end of the
definition, is the text (often called the replacement text), which is simply
inserted whenever troff sees the request or macro call

.PP

The definition of . PP has to precede its first use; undefined macros are simply
ignored. Names are restricted to one or two characters.

Using macros for commonly-occurring sequences of requests is critically impor­
tant. Not only does it save typing, but it makes later changes much easier. Sup­
pose we decide that the paragraph indent should be greater, the vertical space
should be less, and the font should be Roman. Instead of changing the whole
document, we need only change the definition of the . PP macro to something
like

.de PP \" paragraph macro

.sp 2p

.ti +3m

.ft R

and the change takes effect everywhere we used . PP.

The notation \" is an in-line troff function that means that the rest of the
line is to be ignored. We use it here to add comments to the macro definition (a
wise idea once definitions get complicated) .

• \sun ,~ m1crosystems
Revision A of 17 February 1986

/
\

Chapter 10 - Macros, Diversions, and Traps 111

Summary of the . de Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

. rm - Remove Requests,
Macros, or Strings

define

.de xxyy

Not applicable

.yy= ..

Define or redefine the macro xx. The contents of the macro begin on the next
input line. Input lines are copied in copy mode until the definition is ter­
minated by a line beginning with . yy, whereupon the macro yy is called. In
the absence of yy, the definition is terminated by a line beginning with'. .'.
A macro may contain . de requests provided the terminating macros differ
or the contained definition terminator is concealed. '. .' can be concealed
as \ \. . which will copy as \. . and be reread as '. .' .

Summary of the . rm Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

remove

.rmxx

Not applicable

Ignored

Remove request, macro, or string. The name xx is removed from the name
list and any related storage space is freed. Subsequent references will have
no effect.

~\sun ,~ microsystems
Revision A of 17 February 1986

112 Using nroff and troff on the Sun Workstation

. rn - Rename Requests,
Macros or Strings

Summary of the . rn Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Macros With Arguments

rename

.rnxxyy

Not applicable

Ignored

Rename request, macro, or string xx to yy. If yy exists, it is removed first.

Refer to Chapter 9, Strings for information on defining strings.

As another example of macros, consider these two, which start and end a block of
offset, unfilled text, like most of the examples in this paper:

.de BS \,. start indented block

.sp

.nf

.in +O.3i

.de BE \,. end indented block

.sp

.fi

.in -O.3i

Now we can surround text like

Copy to:
10hnDoe
Richard Roberts
Stanley Smith

by the requests . BS and . BE, and it will come out as it did above. Notice that
we indented by an incremental amount: . in +0. 3i instead of . in o. 3i.
This way we can nest our uses of . BS and . BE to get blocks within blocks.

If later on we decide that the indent should be half an inch, then it is only neces­
sary to change the definitions of . BS and . BE, not the whole paper.

The next step is to define macros that can change from one use to the next
according to parameters supplied as arguments to the macro. To make this work,
we need two things: first, when we define the macro, we have to indicate that
some parts of it will be provided as arguments when the macro is called. Then
when the macro is called we have to provide actual arguments to be plugged into

Revision A of 17 February 1986

Chapter 10 - Macros, Diversions, and Traps 113

the definition.

When a macro is invoked by name, the remainder of the line can contain up to
nine arguments. The argument separator is the space character, and arguments
may be surrounded by double-quotes to permit embedded space characters. Pairs
of double-quotes may be embedded in double-quoted arguments to represent a
single double-quote. If the desired arguments won't fit on a line, a concealed
newline (\) may be used to continue the arguments on the next line.

When a macro is invoked the input level is pushed down and any arguments
available at the previous level become unavailable until the macro is completely
read and the previous level is restored. A macro's own arguments can be inter­
polated at any point within the macro with \ $N, which interpolates the Nth argu­
ment (1~~9). If an invoked argument doesn't exist, a null string results. For
example, the macro xx may be defined by

.de xx \"begin definition
Today is \\$1 the \\$2.

\"end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \ $ was concealed in the definition with a preceding backslash (\).
The number of currently available arguments is in the . $ register.

No arguments are available at the top (non-macro) level in this implementation.
Because string referencing is implemented as an input-level push-down, no argu­
ments are available from within a string. No arguments are available within a
trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for
reference. The mechanism does not allow an argument to contain a direct refer­
ence to a long string (interpolated at copy time) and it is advisable to conceal
string references (with an extra \) to delay interpolation until argument refer­
ence time.

Let's illustrate by defining a macro . 8M that will print its argument two point
sizes smaller than the surrounding text. That is, the macro call

.SM UNIX

will produce UNIX.

The definition of . 8M is

.de SM
\s-2\\$1\s+2

.\sun ,~ microsystems
Revision A of 17 February 1986

114 Using nroff and troff on the Sun Workstation

Within a macro definition, the symbol \ \ $n refers to the nth argument that the
macro was called with. Thus \ \ $1 is the string to be placed in a smaller point
size when . SM is called.

As a slightly more complicated version, the following definition of . SM pennits
optional second and third arguments that will be printed in the nonnal size:

.de SM
\\$3\s-2\\$1\s+2\\$2

Arguments not provided when the macro is called are treated as empty, so

.SM UNIX) ,

produces

UNIX),

while

. SM UNIX) .

produces

(UNIX).

It is convenient to reverse the order of arguments because trailing punctuation is
much more common than leading.

)be following macro . BD is the one used to make the 'bold roman' we have
been using for troff request names in text. It combines horizontal motions,
width computations, and argument rearrangement.

.de BD
\&\\$3\f1\\$1\h'-\w'\\$1'u+1u'\\$1\fP\\$2

The \ hand \ w commands need no extra backslash, as we discuss in the section
Copy Mode Input Interpretation. The \ & is there in case the argument begins
with a period.

Two backslashes are needed with the \ \ $ n commands, though, to protect one of
them when the macro is being defined. Perhaps a second example will make this
clearer. Consider a macro called • SH which produces section headings like the
ones in this manual, with the sections numbered automatically, and the title in
bold in a smaller size. The use is

.SH "Section title ... "

If the argument to a macro is to contain spaces, then it must be surrounded by
double quotes, unlike a string, where only the leading quote is pennitted.

~\sun ,~ microsystems
Revision A of 17 February 1986

Chapter 10 - Macros, Diversions, and Traps 115

Here is the definition of the . SH macro:

.nr SH 0 \" initialize section number

.de SH

.sp O.3i

.ft B

.nr SH \\n(SH+1\" increment number

.ps \\n(PS-1 \" decrease PS
\\n(SH. \\$1 \" number. title
.ps \\n(PS \" restore PS
.sp O.3i
.ft R

The section number is kept in number register SH, which is incremented each
time just before it is used. A number register may have the same name as a
macro without conflict but a string may not.

We used \ \n (SH instead of \n (SH and \ \n (PS instead of \n (PS. Ifwe
had used \n (SH, we would get the value of the register at the time the macro
was defined, not at the time it was called. If that's what you want, fine, but that
isn't the case here. Similarly, by using \ \n (PS, we get the point size at the
time the macro is called.

As an example that does not involve numbers, recall our . NP macro which had:

.tl 'left'center'right'

We could make these into parameters by using instead

.tl '*(LT'*(CT'*(RT'

so the title comes from three strings called LT, CT and RT for left title, center
title, and right title, respectively. If these are empty, then the title will be a blank
line. Normally CT would be set with something like

.ds CT - % -

to give just the page number between hyphens, but a user could supply private
definitions for any of the strings.

~\sun ,~ microsystems
Revision A of 17 February 1986

116 Using nroff and troff on the Sun Workstation

. am - Append to a Macro

Summary of the . am Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Copy Mode Input
Interpretation

10.2. Using Diversions to
Store Text for Later
Processing

append to macro

.amxxyy

Not applicable

.yy= ..

Append to macro xx (append version of . de).

During definition and extension of strings and macros (not by diversion) the
input is read in copy mode. The input is copied without interpretation except
that:

o The contents of number registers indicated by \ n are interpolated.

o Strings indicated by \ * are interpolated.

o Arguments indicated by \ $ are interpolated.

o Concealed newlines preceded by backslash (\ newline) are eliminated.

o Comments indicated by \" are eliminated.

o \ t and \a are interpreted as ASCII horizontal tab and SOH respectively (see
Chapter 6, Tabs, Leaders, and Fields for more information).

o \ \ is interpreted as \

o \ . is interpreted as " • "

These interpretations can be suppressed by adding another \ (backslash) to the
beginning of the command. For example, since \ \ maps into a \, \ \ n will
copy as \ n which will be interpreted as a number register indicator when the
macro or string is reread.

There are numerous occasions in page layout when it is necessary to store some
text for a period of time without actually printing it. Footnotes are the most
obvious example: the text of the footnote usually appears in the input well
before the place on the page where it is to be printed is reached. In fact, the place
where it is output normally depends on how big it is, which implies that there
must be a way to process the footnote at least enough to decide its size without
printing it.

trof f provides a mechanism called a diversion for doing this processing. A
diversion is very similar to a macro and in fact uses the same mechanisms as the
macro facility. Any part of the output may be sent into a diversion instead of
being printed, and then at some convenient time the diversion may be brought
back into the input.

~\sun ~~ microsystems
Revision A of 17 February 1986

. di - Divert Text

Chapter 10 - Macros, Diversions, and Traps 117

The request . di xy begins a diversion - all subsequent output is collected into
the diversion called xy until a . di request with no argument is encountered,
which tenninates the diversion. The processed text is available at any time
thereafter, simply by giving the request:

.xy

The vertical size of the last finished diversion is contained in the built-in number
register dn.

As a simple example, suppose we want to implement a 'keep-release' operation,
so that text between the requests . KS and . KE will not be split across a page
boundary (as for a figure or table). Clearly, when a . KS is encountered, we
have to begin diverting the output so we can find out how big it is. Then when a
• KE is seen, we decide whether the diverted text will fit on the current page, and
print it either there if it fits, or at the top of the next page if it doesn't. So:

.de KS \It start keep

.br \It start fresh line

.ev 1 \It collect in new environment

.fi \It make it filled text

.di xx \It collect in XX

.de KE \" end keep

.br \It get last partial line

.di \It end diversion

.if \\n(dn>=\\n(.t .bp \It bp if doesn't fit

.nf \It bring it back in no-fill

.xx \" text

.ev \It return to normal environment

Recall that number register nl is the current position on the output page. Since
output was being diverted, this remains at its value when the diversion started.
dn is the amount of text in the diversion; . t (another built-in register) is the dis­
tance to the next trap, which we assume is at the bottom margin of the page. If
the diversion is large enough to go past the trap, the . if is satisfied, and a . bp
is issued. In either case, the diverted output is then brought back with It. XX.
trof f will do no further processing on it.

This is not the most general keep-release, nor is it robust in the face of all con­
ceivable inputs, but it would require more space than we have here to write it in
full generality. This section is not intended to teach everything about diversions,
but to sketch out enough that you can read existing macro packages with some
comprehension.

Processed output may be diverted into a macro for purposes such as footnote pro­
cessing or determining the horizontal and vertical size of some text for condi­
tional changing of pages or columns. A single diversion trap may be set at a
specified vertical position. The number registers dn and dl respectively contain
the vertical and horizontal size of the most recently ended diversion.

'J\sun ~~ microsystems
Revision A of 17 February 1986

118 Using nroff and troff on the Sun Workstation

Processed text that is diverted into a macro retains the vertical size of each of its
lines when reread in nofill mode regardless of the current V. Constant-spaced
(. cs) or emboldened (. bd) text that is diverted can be reread correctly only if
these modes are again or still in effect at reread time. One way to do this is to
embed in the diversion the appropriate . cs or . bd requests with the 'tran­
sparent' mechanism described in the chapter Introduction to nrolf and trolf.

Diversions may be nested and certain parameters and registers are associated
with the current diversion level (the top non-diversion level may be thought of as
the Oth diversion level). These are the diversion trap and associated macro, no­
space mode, the internally-saved marked place (see . mk and . rt), the current
vertical place (. d register), the current high-water text baseline (. h register), and
the current diversion name (. z register).

Summary of the . di Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

divert

.dixx

Not applicable

End of diversion

Divert output to macro xx. Normal text processing occurs during diversion
except that page offsetting is not done. The diversion ends when the request
. di or . da is encountered without an argument; extraneous requests of this
type should not appear when nested diversions are being used.

D (see Table A-2)

. da - Append to a Diversion

Summary of the . da Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Exp lanation:

append to diversion

.daxx

Not applicable

End of diversion

Append to diversion xx. This is the diversion equivalent of the . am (append
to macro) request.

~\sun ~~ microsystelT1S
Revision A of 17 February 1986

10.3. Using Traps to Process
Text at Specific Places
on a Page

. wh - Set Page or Position
Traps

Chapter 10 - Macros, Diversions, and Traps 119

Three types of trap mechanisms are available, namely page traps, diversion
traps, and input-line-count traps.

Macro-invocation traps may be planted using the . wh (when) request at any
page position including the top. This trap position may be changed using the
. ch (change) request. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an
increase in page length.

Two traps may be planted at the same position only by first planting them at dif­
ferent positions and then moving one of the traps; the first planted trap will con­
ceal the second unless and until the first one is moved. If the first one is moved
back, it again conceals the second trap.

The macro associated with a page trap is automatically invoked when a line of
text is output whose vertical size reaches or 'sweeps past' the trap position.
Reaching the bottom of a page springs the top-of-page trap, if any, provided there
is a next page.

The distance to the next trap position is available in the . t register; if there are
no traps between the current position and the bottom of the page, the distance
returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using
the . dt (diversion trap) request. The . t register works in a diversion; if there
is no subsequent trap a large distance is returned. For a description of input­
line-count traps, see the . it request below .

Summary of the . w h Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

when

.whNxx

Not applicable

Not applicable

Install a trap to invoke xx at page position N; a negative N is interpreted with
respect to the page bottom. Any macro previously planted at N is replaced
by xx. A zero N refers to the top of a page. In the absence of xx, the first­
found trap at N, if any, is removed.

v (see Table A-2)

~\sun ,~ microsystems
Revision A of 17 February 1986

120 Using nroff and troff on the Sun Workstation

. ch - Change Position of a
Page Trap

Summary of the . ch Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. dt - Set a Diversion Trap

change trap

.chxxN

Not applicable

Not applicable

Change the trap position for macro Xx to be N. In the absence of N, the trap,
if any, is removed.

v (see Table A-2)

Summary of the . dt Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

diversion trap

.dt Nxx

Not applicable

Turn off diversion trap

Install a diversion trap at position N in the current diversion to invoke macro
xx. Another . dt will redefine the diversion trap. If no arguments are
given, the diversion trap is removed.

D, v (see Table A-2)

Revision A of 17 February 1986

(

. it - Set an Input-Line
Count Trap

Chapter 10 - Macros, Diversions, and Traps 121

Summary of the . i t Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. em - Set the End of
Processing Trap

input-line count trap

.itNxx

Not applicable

Tum off trap

Set an input-line-count trap to invoke the macro xx after N lines of text input
have been read (control or request lines don't count). The text may be in-line
text or text interpolated by in-line or trap-invoked macros.

E (see Table A-2)

Summary of the . em Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

end macro

• em xx

Not applicable

No trap installed

Call the macro xx when all input has ended. The effect is the same as if the
contents of .xx had been at the end of the last file processed.

Revision A of 17 February 1986

11
Number Registers

Number Registers .. 125

11.1. . nr - Set Number Registers ... 125

11.2. Auto-Increment Number Registers ... 127

11.3. Arithmetic Expressions with Number Registers ... 128

11.4. . af - Specify Format of Number Registers .. 129

11.5. . r r - Remove Number Registers ... 131

11.1. . nr - Set Number
Registers

11
Number Registers

In a programmable text formatter such as troff, you need a facility for storing
numbers somewhere, retrieving the numbers, and for doing arithmetic on those
numbers. troff meets this need by providing things called number registers.
Number registers give you the ability to define variables where you can place
numbers, retrieve the values of the variables, and do arithmetic on those values.
Number registers, like strings and macros, can be useful in setting up a document
so it is easy to change later. And of course number registers serve for any sort of
arithmetic computation.

Number registers, just like strings, have one- or two-character names. They are
set by the . nr (number register) request, and are referenced anywhere by \ n x
(one-character name) or \n (xy (two-character name). When you access a
number register so that its value appears in the printed text, the jargon says that
you have interpolated the value of the number register.

A variety of parameters are available to the user as predefined, named number
registers (see Appendix 0). In addition, users may define their own named regis­
ters. Register names are one or two characters long and do not conflict with
request, macro, or string names. Except for certain predefined read-only regis­
ters, a number register can be read, written, automatically incremented or decre­
mented, and interpolated into the input in a variety of formats. One common use
of user-defined registers is to automatically number sections, paragraphs, lines,
etc. A number register may be used any time numerical input is expected or
desired and may be used in numerical expressions.

troff defines several pre-defined number registers listed in Appendix O.
Among them are % for the current page number, nl for the current vertical posi­
tion on the page, dy, mo, and yr for the current day, month and year (see Table
0-1) for a complete list); and . sand . f for the current size and font - the font
is a number from 1 to 4. Any of these number registers can be used in computa­
tions like any other register, but some, like. sand. f, cannot be changed with a
. nr request because they are "read only" (see Table D-2) for a complete list).

You create and modify number registers using the . nr (number register) request.
In its simplest form, the . nr request places a value into a number register - the
register is created if it doesn't already exist. The . nr request specifies the name
of the number register, and also specifies the initial value to be placed in there.
So the request

~\sun ,~ microsystems
125 Revision A of 17 February 1986

126 Using nroff and troff on the Sun Workstation

.nr PD 1.5v

would be a request to set a register called PD (which we might know as 'Para­
graph Depth' if we were writing a macro package) to the value l.5v (1.5 of
troff's vertical units).

As an exampte of the use of number registers, in the -ms macro package, most
significant parameters are defined in terms of the values of a handful of number
registers (see the chapter "Formatting Documents with the -ms Macro Package"
in Formatting Documents on the Sun Workstation). These include the point size
for text, the vertical spacing, and the line and title lengths. To set the point size
and vertical spacing for the following paragraphs, for example, a user may say:

.nr PS 10

.nr VS 12

The paragraph macro . PP is defined (roughly) as follows:

.de PP

.ps \\n(PS \If reset size

.vs \\n(VSp \If spacing

.ft R \If font

.sp 0.5v \If half a line

. ti +3m

This sets the font to Roman and the point size and line spacing to whatever
values are stored in the P Sand vs number registers.

Why are there two backslashes? When troff originally reads the macro
definition, it peels off one backslash to see what's coming next. To ensure that
another is left in the definition when the macro is used, we have to put two
backslashes in the definition. If only one backslash is used, point size and verti­
cal spacing will be frozen at the time the macro is defined, not when the macro is
used.

Protecting by an extra layer of backslashes is only needed for \ n, \ *, \ $, and
\ itself. Things like \ s, \ f, \ h, \ v, and so on do not need an extra
backslash, since they are converted by troff to an internal code immediately
upon being seen.

~\sun ,~ microsystems
Revision A of 17 February 1986

Chapter 11 - Number Registers 127

Summary o/the . nr Request
Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

11.2. Auto-Increment
Number Registers

number register

.nrR±NM

Not applicable

Ignored

Assign the value ±N to number register R, with respect to the previous value,
if any. Set the increment for auto-incrementing to M.

u (see Table A-2)

When you set a number register with the . nr request, you can also specify an
additional number as an auto-increment value - that is, the number is added to
the number register every time you access the number register. You specify the
auto-increment value with a request such as:

.nr sn 0 1

to specify a (hypothetical) section number register that starts off with the value 0
and is incremented by 1 every time you use it. This might be applicable (for
instance) to numbering the sections of a document automatically - something
you might expect a computer to do for you. You might also define a numbered
list macro that would clock up the item number every time you added a new list
item.

Here's a very quick and dirty example of the use of auto-incrementing a number
register:

.nr en -1 2

the odd numbers \n+(cn, \n+(cn, \n+(cn, \n+(cn, \n+(en, \n+(cn,

When we format the above sequence, we get the following:

... the odd numbers 1,3,5, 7, 9, 11, ...

The table below shows the effects of accessing the number registers x and xx
after a . nr request that sets them to the value N with an auto-increment value
ofM.

~\sun ~~ microsystems
Revision A of 17 February 1986

128 Using nroff and troff on the Sun Workstation

Table 11-1

11.3. Arithmetic Expressions
with Number Registers

Access Sequences for Auto-incrementing Number Registers

Request
Access Effect on Value

Sequence Register Interpolated

.nr xNM \nx none N

.nr xx N M \n(xx none N

.nr xNM \n+x x incremented by M N+M

.nr xNM \n-x x decremented by M N-M

.nr xx N M \n+ (xx xx incremented by M N+M

.nr xx N M \n-(xx xx decremented by M N-M

Arithmetic expressions can appear anywhere that a number is expected. As a
trivial example,

.nr PS \\n(PS-2

decrements the value in the PS macro by 2.

Expressions can use the arithmetic operators and logical operators as shown in
the table below. Parts of an expression can be surrounded by parentheses.

Table 11-2 Arithmetic Operators and Logical Operators for Expressions

Arithmetic Operator Meaning

+ Addition
- Subtraction
/ Division

* Multiplication
% Modulo

Logical Operator Meaning

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

= or == Equal to
& and
: or

.Except where controlled by parentheses, evaluation of expressions is left-to-right
- there is no operator precedence.

Although the arithmetic we have done so far has been straightforward, more
complicated things are somewhat tricky. First, number registers hold only

~\sun ,~ microsystems
Revision A of 17 February 1986

11.4 .. af - Specify Format
of Number Registers

Chapter 11 - Number Registers 129

integers. trof f arithmetic uses truncating integer division. Second, in the
absence of parentheses, evaluation is done from left to right without any operator
precedence (including relational operators). Thus

7*-4+3/13

becomes '-1'. Number registers can occur anywhere in an expression, and so
can scale indicators like p, i, ro, and so on (but no spaces). Although integer
division causes truncation, each number and its scale indicator is converted to
machine units (11432 inch) before any arithmetic is done, so li/2u evaluates to
O.5i correctly.

The scale indicator u often has to appear where you would not expect it - in
particular, when arithmetic is being done in a context that implies horizontal or
vertical dimensions. For example,

.11 7/2i

would seem obvious enough - 3.5 inches. Sorry - remember that the default
units for horizontal parameters like the . 11 request are ems. So that expression
is really '7 ems / 2 inches' , and when translated into machine units, it becomes
zero. How about

.11 7i/2

Still no good - the '2' is '2 ems', so '7i/2' is small, although not zero. You
must use

.11 7i/2u

So again, a safe rule is to attach a scale indicator to every number, even con­
stants.

For arithmetic done within a . nr request, there is no implication of horizontal
or vertical dimension, so the default units are 'units', and 7i/2 and 7i/2u mean the
same thing. Thus

.nr 11 7i/2

.11 \\n(llu

does just what you want, so long as you don't forget the u on the . 11 request.

When you use a number register as part of the text, the contents of the register
are said to be interpolated into the text at that point For example, you could use
the following sequence:

.nr xy 567

the value of the \flxy\fP number register is: \n(xy.

~\sun ,~ mlcrosystems
Revision A of 17 February 1986

130 Using nroff and troff on the Sun Workstation

and when you formatted that sequence, it would appear as:

... the value of the xy number register is: 567

When interpolated, the value of the number register is read out as a decimal
number. You can change this format by using the . af (assign format) request
to get things like Roman numerals or sequences of letters. Here is the example of
the auto-incrementing section above, but with the interpolation format now set
for lower~case Roman numerals:

.nr en -1 2

.af en i

the odd Roman numerals \n+(en, \n+(en, \n+(en, \n+(en, \n+(en, \n+(en,

When we format the above sequence, we get the following:

... the odd Roman numerals i, iii, v, vii, ix, xi, ...

A decimal format having N digits specifies a field width of N digits.

Read-only number registers and the width function are always decimal.

The t,\ble below shows the different formats you can apply to a number register
when it is interpolated.

Table 11-3 Interpolation Formats/or Nwnber Registers

Format Description

1 Decimal
001 Decimal with leading zeros

i Lower-case Roman Numerals
I Upper-case Roman Numerals
a Lower-case Letters
A Upper-case Letters

Summary of the . a f Request
Item

Mnemonic:

Form of Request:

Initial Value:

If No Argwnent:

Explanation:

assign format

.afRc

Arabic

Ignored

Assign format c to register R.

~\sun ,~ microsystems

. Numbering
Sequence

0, 1, 2, 3, 4, 5, ...
000,001,002,003,004,005, ...
0, i, ii, iii, iv, v, ...
0, I, II, III, IV, V, ...
0, a, b, c, ... , z, aa, ab, ... , ZZ, aaa, ...
0, A, B, C, ... , Z, AA, AB, ... , ZZ, AAA, ...

Description

Revision A of 17 February 1986

11.5 .. rr - Remove Number
Registers

Chapter 11 - Number Registers 131

If you create many number registers dynamically, you may have to remove
number registers that you aren't using any more to recapture internal storage
space for newer registers. You remove a number register with the . r r (remove
register) request:

.rr xy

removes the xy number register from the list

Summary of the . r r Request
Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Exp lanation:

remove register

.rr R

Not applicable

Ignored

Remove register R. If many registers are being created dynamically, it may
become necessary to remove no-longer-used registers to recapture internal
storage space for newer registers.

~\sun ,~ microsystems
Revision A of 17 February 1986

12

Drawing Lines and Characters

Drawing Lines and Characters ... 135

12.1. \u and \d Functions - Half-Line Vertical Movements 135

12.2. Arbitrary Local Horizontal and Vertical Motions 136

\ v Function - Arbitrary Vertical Motion .. 136

\ h Function - Arbitrary Horizontal Motion .. 137

12.3. \ 0 Function - Digit-Size Spaces .. 138

12.4. '\ ' Function - Unpaddable Space ... 139

12.5. \ I and \ ~ Functions - Thick and Thin Spaces 140

12.6. \& Function - Non-Printing Zero-Width Character 141

12.7. \0 Function - Overstriking Characters ... 142

12.8. \z Function - Zero Motion Characters .. 142

12.9. \ w Function - Get Width of a String .. 143

12.10. \k Function - Mark Current Horizontal Place 144

12.11. \b Function - Build Large Brackets ... 145

12.12. \ r Function - Reverse Vertical Motions .. 146

12.13. Drawing Horizontal and Vertical Lines .. 146

\ 1 Function - Draw Horizontal Lines ... 146

\L Function - Draw Vertical Lines .. 147

Combining the Horizontal and Vertical Line Drawing
Functions ... 148

12.14. . me - Place Characters in the Margin .. 148

12.1. \ u and \ d Functions
- Half-Line Vertical
Movements

12
Drawing Lines and Characters

This section is a grab-bag of functions for moving to arbitrary places on the page
and for drawing things. This section covers a number of useful topics:

o Local motions - how to move forward and backward and up and down on
the page to get special effects.

o Constructing whole characters out of pieces of characters that are available
in the special font - these facilities are for doing mathematical typesetting.

o Drawing horizontal and vertical lines to make boxes and underlines and
such.

o Various types of padding characters, zero-width characters, and functions for
obtaining the width of a character string.

Most of these commands are straightforward, but messy to read and tough to type
correctly.

If you can't or don't want to use eqn, subscripts and superscripts are then most
easily done with the half-line local motions \u (for up) and \d (for down). To
move up the page half a point, insert a \ u at the desired place, and to go down
the page half a point, insert a \ d at the desired place. The \ u and \ din-line
functions should always be used in pairs, as explained below. Thus if your input
consists of the following fragment:

... area of a circle is 'Area = \ (*pr\u2\d' when calculating

the output when that fragment is formatted consists of:

. .. area of a circle is 'Area = 1tr2, when calculating ...

This is a first approximation of what you want, but the superscript '2' is too
large. To make the '2' smaller, bracket it with \ s-2 ... \ sO. This reduces the
point-size by two points before the superscript and restores the point-size to the
previous value after the superscript. This example input:

... area of a circle is 'Area = \ (*pr\u\s-22\sO\d' when calculating ...

when formatted, generates:

135 Revision A of 17 February 1986

136 Using nroff and troff on the Sun Workstation

. .. area of a circle is 'Area = 1tr2, when calculating ...

Now the reason that the \ u and \ d functions should always be correctly paired
is that they refer to the current vertical spacing, so you must be sure to put any
local motions either both inside or both outside any size changes, or you will get
an unbalanced vertical motion. Carrying this example further, the input could
look like this:

• •. area of a circle is 'Area = \ (*pr\u\s-22\d\sO' when calculating ...

We'll format that example in a larger point-size so that you can see the effect of
the baseline being out of whack. So when we format the above construct with
the motions incorrectly paired, ~ get this:

area of a circle is 'Area = nr 'when calculating ...

12.2. Arbitrary Local
Horizontal and Vertical
Motions

\ v Function - Arbitrary
Vertical Motion

As you can see, the baseline is higher after the incorrectly-displayed equation.

The next two sections describe the in-line \ v (vertical) and the \h (horizontal)
local motion functions. The general form of these functions is \ v ' N ' for the
vertical motion function, and \ h ' N ' for the horizontal motion function. The
argument N in the functions is the distance to move. The distance N may be
negative - the positive directions are to the right and down.

A local motion is one contained within a line. To avoid unexpected vertical
dislocations, it is necessary that the net vertical local motion within a word in
filled text, and otherwise within a line, be zero.

Sometimes the space given by \u and \d is not the right amount (usually too
much). The in-line \ v function requests an arbitrary amount of vertical motion.
The in-line \ v function

\v ' amount I

moves up or down the page by the amount specified in amount. For example,
here's how to get a large letter at the start of a verse:

.in +.3i

.ti -.3i
\v'1.O'\s36A\sO\v'-1.O'\h'-4p'wake! for Morning in the Bowl of Night
\h'2p'Has flung the Stone that puts the Stars to Flight:
.in -.3i
And La! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.

and when we format that verse we get:

A wake! for Morning in the Bowl of Night
.L-"\Has flung the Stone that puts the Stars to Flight:
And Lo! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light. 3

.sun
~ mlcrosystems

Revision A of 17 February 1986

\ h Function - Arbitrary
Horizontal Motion

Chapter 12 - Drawing Lines and Characters 137

The indent amount we used here (0.3 inch) was detennined by fiddling around
until it looked reasonable. Later we show another in-line function for measuring
the actual width of something.

A minus sign means upward motion, while no sign or a plus sign means move
down the page. Thus \ v'-l' means an upward vertical motion of one line
space.

There are many other ways to specify the amount of motion. The following three
examples are all legal.

\v'O .1i'

\v'3p'

\v'-O.5m'

Notice that the scale specifier (i, p, or m) goes inside the quotes. Any charac­
ter can be used in place of the quotes; this is also true of all other troff com­
mands described in this section.

Since troff does not take within-the-line vertical motions into account when
figuring out where it is on the page, output lines can have unexpected positions if
the left and right ends aren't at the same vertical position. Thus \ v, like \ u
and \d, should always balance upward vertical motion in a line with the same
amount in the downward direction.

Arbitrary horizontal motions are also available - \ h is quite analogous to \ v ,
except that the default scale factor is ems instead of line spaces. As an example,

\h'-O.li'

causes a backward motion of a tenth of an inch. As a practical matter, consider
printing the mathematical symbol '»'. The standard spacing is too wide, so
eqn replaces this by

>\h'-O.3m'>

to produce ».

Frequently \h is used with the width function, \ w, to generate motions equal to
the width of some character string. The construction

\w'thing'

is a number equal to the width of 'thing' in machine units (11432 inch). All
troff computations are ultimately done in these units. To move horizontally
the width of an 'x', we can say

3 Omar Khayyam -the RubQiydt

4}\sun
,~ microsystems

Revision A of 17 February 1986

138 Using nroff and troff on the Sun Workstation

12.3. \ 0 Function - Digit­
Size Spaces

\h'\w'x'u'

As we mentioned above, the default scale factor for all horizontal dimensions is
m (ems), so here we must have the u for machine units, or the motion produced
will be far too large. troff is quite happy with the nested quotes, by the way,
so long as you don't leave any out.

As a live example of this kind of construction, the re, re, CE, and IE ligatures dis­
cussed in the section on ligatures in the chapter Fonts and Special Characters,
were constructed using the \ h function to define the following strings:

.ds ae a\h'-(\w'a'u*4/10)'e

.ds Ae A\h'-(\w'A'u*4/10)'E

.ds oe o\h'-(\w'o'u*4/10)'e

.ds Oe O\h'-(\w'O'u*4/10)'E

and for any given one of those strings, the mess is unscrambled like this:

Construct

. ds ae
a
\h'-(\w'a'u*4/10)'
e

Explanation

Define a string called 'ae' .
Letter 'a' in the string.
Move backward 0.4 of the width of the letter 'a' .
Letter' e' in the string.

The in-line \ 0 function is an unpaddable white space of the same width as a
digit. 'Unpaddable' means that it will never be widened or split across a line by
line justification and filling. You could use the digit space to; get numerical
columns correctly lined up. For example, suppose you have this list of items:

.nf

.ta 5n
Step Description
.sp 5p
1. Unpack the handy dandy fuse blower.
2. Inspect for obvious shipping defects.

9. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses .
. fi

When you format this list of operations, you get this result:

~\sun ,~ microsystems
Revision A of 17 February 1986

12.4. '\ ' Function -
UnpaddabJe Space

Chapter 12 - Drawing Lines and Characters 139

Step Description

1. Unpack the handy dandy fuse blower.
2. Inspect for obvious shipping defects.

9. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses.

As you can see, the numbers do not line up at the decimal point, but instead are
lined up on the left. Placing a space character in front of the digits in the input is
not sufficient measure to line up the digits at the decimal. A space is not the
same width as a digit (at least not in troff). A solution is to use the unpadd­
able digit-space character \ 0 in front of the single digits like this:

.nf

.ta 5n
\ODescription Step

.sp 5p
\01.
\02.

Unpack the handy dandy fuse blower.
Inspect for obvious shipping defects.

\09. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses .
. fi

Now when you format the text, you get this result:

Step Description

1. Unpack the handy dandy fuse blower.
2. Inspect for obvious shipping defects.

9. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses.

which looks better than the previous example.

There is also the in-line \ function, which is the \ character (backslash) followed
by a space character. This function is an unpaddable character the width of a
space. You can use this to make sure that things don't get split across line boun­
daries, for instance if you want to see something like nroff -Tl.p myfde in
the stream of text, with the command line set off like it was here and ensuring
that it all appears on one line, you would type it in as

~\sun ,~ microsystems
Revision A of 17 February 1986

140 Using nroff and troff on the Sun Workstation

12.5. \ I and \,., Functions
- Thick and Thin
Spaces

\ \ \f(LBnroff\ -Tlp\fP\ \flmyfile\fP\ \
in-line in the text.

In typography, there are times when you need spaces that are one-sixth or one­
twelfth of the width of an em-space. t ro f f supplies the in-line \ I function
which is one-sixth of an em-space wide - this is sometimes called a 'thick
space'. Where would you want such a thing? Well one place it could be used is
in making an ellipsis look better. In general, an ellipsis in a proportional font
looks too cramped if you just string three dots together:

and the dots tend to look too spread out if you just place spaces between them:

and so the answer is often to use the thick space to get a more pleasing effect like
this:

which was actually achieved by typing:

. \ I . \ I .

Lastly, the in-line \,., function is one-twelfth of the width of an em-space space.
This function is almost always used for a typographical application called italic
correction. Consider an italic word followed by some punctuation such as do
tell! Because the italic letters are slanted to the right, they lean slightly on the
trailing punctuation, especially when the last letter is a tall one like the 1 in the
example. So, what typographers do is to apply the italic correction in the form of
a thin space just before the punctuation, so that the effect is now do tell! What
we actually typed here was

\fIdo tell\fP\"'!

with the italic correction just before the exclamation mark.

Typing the italic correction at every instance of adjacent roman and italic text,
would be a lot of work. Some macro packages construct special-purpose macros
for applying the italic correction. For example, the -man macro package has a
. IR macro that joins alternating italic and roman words together so that you can
italicize parts of words or have italic text with trailing roman punctuation. You
use the . IR macro like:

.IR well spring

to get the composite effect of wellspring in your text. The . IR macro (some­
what simplified) looks like this:

.de IR
\&\fI\\$1\~\fR\\$2\fI\\$3\-\fR\\$4\fI\\$5\-\fR\\$6\fI\\$7\-\fR\\$8\fI\\$9\-\fR

~\sun ,~ microsystems
Revision A of 17 February 1986

12.6. \ & Function - Non­
Printing Zero-Width
Character

Chapter 12 - Drawing Lines and Characters 141

and you can see the italic correction applied after every parameter that is set in
the italic font.

The \ & function is a character that does not print, and does not take up any
space in the output text. You might wonder what use it is at all? One application
of the non-printing character used throughout this manual is to display examples
of text containing troff or nroff requests. To print a troff request just
as it appears in the input, you have to distinguish it from a real troff request.
You cannot print an example whose input looks just like this:

.in +O.Si indent the text half an inch

lots of lines of text to be processed

.in -O.Si unindent the text half an inch

• The . characters at the beginning of each line would be interpreted as troff
requests instead of text representing examples of requests. In such cases, we
have to use the \& function to stop troff or nroff from interpreting the
at the start of the line as a control character. We would type the example like
this:

\&.in +O.Si
\&.
\&.
\&.

indent the text half an inch

lots of lines of text to be processed
\&.
\&.
\&.

\&.in -O.Si unindent the text half an inch

Another place where the \ & function is useful is within some of the other in-line
functions such as the \ 1 function. The \ 1 function draws lines and you type
the function like:

\ 1 ' length character '

where length is the length of the line you want to draw, and character is the
character to use. Sometimes, the character might look like a part of length, for
instance,

\l'l.Oi='

doesn't get you a one-inch line of = signs as you might expect, because the
sign looks like an expression where you are trying to say that "1.0i is equal to"
something else. When you encounter this situation, type the \ 1 function like
this:

~\sun ~~ mlcrosystems
Revision A of 17 February 1986

142 Using nroff and troff on the Sun Workstation

12.7. \ 0 Function -
Overstriking Characters

12.8. \ z Function - Zero
Motion Characters

\l'l.Oi\&='

and the result is a one-inch line of =========== signs as you see here.

Automatically-centered overstriking of up to nine characters is possible with the
in-line \ 0 (overstrike) function. The \ 0 function looks like \ 0' string'
where the characters in string are overprinted with their centers aligned. This
means for example, that you can print from one to nine different characters
superimposed upon each other. troff determines the width of this "character"
you are creating to be the width of the widest character in your string. The super­
imposed characters are then centered on the widest character. The string should
not contain local vertical motion.

The in-line \0 function is used like this:

\ 0" set of characters"

This is useful for printing accents, as in

syst\o"e\(ga"me t\o"e\ (aa"l\o"e\ (aa"phonique

which produces

systeme telephonique

The accents are \ (ga (grave accent) and \ (aa (acute accent), or \ .. and \';
remember that each is just one character to troff.

\o"e\'"

produces

and

\0"\ (mo\ (sl"

produces

e.

You can make your own overstrikes with another special convention, \ z, the
zero-motion command. \ z x suppresses the normal horizontal motion after
printing the single character x, so another character can be laid on top of it.
Although sizes can be changed within \0, troff centers the characters on the
widest of them, and there can be no horizontal or vertical motions, so \ z may
be the only way to get what you want:

~\sun ,~ microsystems
Revision A of 17 February 1986

12.9. \ w Function - Get
Width of a String

Chapter 12 - Drawing Lines and Characters 143

is produced by

.sp 2
\s8\z\(ci\s14\z\ (ci\s22\z\ (ci\s36\z\(ci

The . sp 2 line is needed to leave enough vertical space for the result.

As another example, an extra-heavy semicolon that looks like

; instead of ; or ;

can be constructed with a big comma and a big period above it:

\s+6\z,\v'-O.2Sm' .\v'O.2Sm'\sO

where O. 2 Sm is an empirical constant.

As further examples, \ z \ (ci \ (pI produces

{)

and \ (br \ z \ (rn \ (ul \ (br produces the smallest possible constructed box:

IJ
There is also a more general overstriking function for piling things up vertically
- this topic is discussed in the section" \b Function - Build Large Brackets"
later in this chapter.

Back in the section on using tabs, we saw how we could set tab stops to various
positions on the line and lay stuff out in columns based on the tab stops. Some­
times it is hard to figure out where the tab stops should go because you can't
always tell in advance how wide things are - this is especially true for propor­
tional fonts (by definition the characters aren't all the same size). Often what you
want is to set tab stops based on the width of an item. Then you can set tab stops
based on that width and remain independent of the size of the characters if you
decide to change point size.

The in-line width function \ w ' string , generates the numerical width of string
(in basic units). For example, . ti -\ w' 1. 'u could be used to temporarily
indent leftward a distance equal to the size of the string '1. '. Size and font
changes may be safely embedded in string, and do not affect the current environ­
ment.

In a previous example we showed how a large capital letter could be placed in a
verse with vertical motions and we played some games with indenting to get the
thing to come out more-or-Iess right. The problem with that approach is that we
had to measure the size of the character and arrive at the indent by trial and error

~\sun ,~ microsystelT1S
Revision A of 17 February 1986

144 Using nroff and troff on the Sun Workstation

Table 12-1

12.10. \k Function - Mark
Current Horizontal
Place

(actually, error and trial). Another problem is that the measured indent didn't
take the point-size into account - if we decide to change sizes, the measure­
ments are all wrong. The width function can measure the size of the thing
directly, so here's our example all over again using the \ w function:

.in +\w'\s36A\sO'u

.ti -\w'\s36A\sO'u
\v'1.O'\s36A\sO\v-l.O'\h'-Sp'wake! for Morning in the Bowl of Night
\h'lp'Has flung the Stone that puts the Stars to Flight:
.in -\w'\s36A\sO'u
And Lo! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.

and when we format that text we get this result:

A wake! for Morning in the Bowl of Night
.t-\.. Has flung the Stone that puts the Stars to Flight:
And Lo! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.

The width function also sets three number registers. The registers st (string top)
and sb (string bottom) are set respectively to the highest and lowest extent of
string relative to the baseline; then, for example, the total height of the string is
\n (stu-\n (sbu. In troff the number register ct (character type) is set to a
value between 0 and 3:

troff Width Function- ct Number Register Values

ct Number
Register

Value

o

1

2

3

Meaning

all of the characters in
string were short lower
case characters without
descenders (like e)
at least one character has a
descender (like y)
at least one character is tall
(like H)
both tall characters and
characters with descenders
are present.

The in-line \ kx function stores the current horizontal position in the input line
into register x. As an example, we could get a bold italic effect by the construc­
tion:

\kxword\h' I \nxu+2u 'word

~\sun ~~ microsystems
Revision A of 17 February 1986

12.11. \b Function - Build
Large Brackets

Chapter 12 - Drawing lines and Characters 145

This emboldens word by backing up to its absolute (hence, the D beginning
(\kxword\h'I\nxu) plus 2 machine units (+2u) and overprinting it, resulting in

word

The Special (mathematical) font contains a number of characters for constructing
large brackets out of pieces. The table below shows the escape-sequences for the
individual pieces, what they look like, and their names.

Table 12-2 Pieces for Constructing Large Brackets

Escape
Character Description

Sequence

\(It r left top of big curly bracket

\(lb L left bottom of big curly bracket

\(rt 1 right top of big curly bracket

\(rb J right bottom of big curly bracket

\(lk ~ left center of big curly bracket

\(rk ~ right center of big curly bracket

\(bv I bold vertical

\(If L left floor (left bottom of big square bracket)

\(rf J right floor (right bottom of big square bracket)

\(le r left ceiling (left top of big square bracket)

\(re 1 right ceiling (right top of big square bracket)

These pieces can be combined into various styles and sizes of brackets and
braces by using the in-line \b (for bracketing) function. The \b function is
used like this:

\b'string ,

to pile up the characters vertically in string with the first character on top and the
last on the bottom. The characters are vertically separated by one em and the
total pile is centered 1I2-em above the current baseline (1I2-line in nroff).
For example:

\x'-O.5m'\x'O.5m'\b'\(lc\(lf'E\I\b'\(rc\(rf'

produces [E]. As with previous examples, we should unscramble the whole

mess for you:

~\sun ,~ microsystems
Revision A of 17 February 1986

146 Using nroff and troff on the Sun Workstation

12.12. \ r Function -
Reverse Vertical
Motions

12.13. Drawing Horizontal
and Vertical Lines

\ 1 Function - Draw
Horizontal Lines

Escape
Character Description

Sequence

\b start bracketing function

\(le r left ceiling

\(If L left floor

E letter E

\b start bracketing function

\(re 1 right ceiling

\(rf J rightfioor

Here's another example of using braces and brackets. You get this effect:

{[xJ}
by typing this:

\b'\(lt\(lk\(lb' \b'\(lc\(lf' x \b'\(rc\(rf' \b'\(rt\(rk\(rb'

The \r function makes a single reverse motion of one em ugward in troff,
and one line upward in nroff.

Typesetting systems commonly have commands to draw horizontal and vertical
lines. Of course typographers don't call them lines - they are called 'rules'
because once upon a time they were drawn with rulers. troff provides a con­
venient facility for drawing horizontal and vertical lines of arbitrary length with
arbitrary characters, and these facilities are described in the subsections follow­
ing.

The in-line \1 (lower-case ell) function draws a horizontal line. For example,
the function \ 1 ' 1 . 0 i ' draws a one-inch horizontal line like this
______ in the text.

The line is actually drawn using the baseline rule character in troff, and the
underline character in nr 0 f f, but you can in fact make the character that draws
the line any character you like by placing the character after the length designa­
tion. For example, you could draw a two inches of tildes by using \ l' 2 . 0 i -,
to get -------------------------------------- in the text. The construction \ L is
entirely analogous, except that it draws a vertical line instead of horizontal.

The general form of the \ 1 function is

\ 1 ' length character'

where length is the length of the string of characters to be drawn, and character
is the character to use to draw the line. If character looks like a continuation of

~\sun ~~ microsystems
Revision A of 17 February 1986

\ L Function - Draw Vertical
Lines

Chapter 12 - Drawing Lines and Characters 147

length, you can insulate character from length with the zero-width \ & sequence.
If length is negative, a backward horizontal motion of size length is made before
drawing the string. Any space resulting from length / (size of character) having a
remainder is put at the beginning (left end) of the string. In the case of characters
that are designed to be connected such as baseline-rule (_), underrule (_), and
root-en (-), the remainder space is covered by overlapping. If length is less than
the width of character, a single character is centered on a distance length. As an
example, here is a macro to underscore a string:

.de us
\\$1\1'10\(ul'

and you use the . us macro like this:

.us "underlined words"

to yield underlined words in the stream of text. You could also write a macro to
draw a box around a string:

.de bx
\ (br\ \$1 \ (br\ 1 ' 10\ (rn '\ 1 ' 10\ (ul '

and so you can type:

.bx "words in a box"

to get some I words in a boX! in the text stream.

The in-line \L (upper-case ell) function draws a vertical line. As in the case of
the \ 1 function, the general form of the function is

\ L ' length character'

This draws a vertical line consisting consisting of the (optional) character char­
acter stacked vertically apart 1 em (lline in nroff), with the first two charac­
ters overlapped, if necessary, to form a continuous line. The default character is
the box rule, I (\ (br); the other suitable character is the bold vertical I
(\ (bv). The line is begun without any initial motion relative to the current base
line. A positive length specifies a line drawn downward and a negative length
specifies a line drawn upward. After the line is drawn no compensating motions
are made; the instantaneous baseline is at the end of the line.

~\sun ,~ microsystems
Revision A of 17 February 1986

148 Using nroff and troff on the Sun Workstation

Combining the Horizontal
and Vertical Line Drawing
Functions
The horizontal and vertical line drawing functions may be used in combination to produce large boxes. The zero­
width box-rule and the 1f2-em wide underrule were designed to form comers when using one-em vertical spacings.
For example the macro

.de eb

.sp -1 \"compensate for next automatic baseline spacing

.nf \"avoid possibly overflowing word buffer
\h'-.5n'\L'1 \\nzu-1'\1'\\n(.lu+1n\(ul'\L'-1 \\nzu+1'\1' IOu-.5n\(ul'

\"draw box
.fi

draws a box around some text whose beginning vertical place was saved in number register z (using . mk z) as done
for this paragraph.

12.14 .. me - Place
Characters in the
Margin

Many types of documents require placing specific characters in the margins. The
most common use of this is placing bars down the margins to indicate what's
changed in a document from one revision of a document to the next. This para­
graph and the remainder of the text in this section were preceded by a

.mc \s12\(br\sO

request (that is, place a 12-point box-rule character in the margin) to tum on the
marginal bars, and followed by a simple

.mc

request to tum off the marginal bars.

Currently, this request is not bug-free, and the margin character only appears to
the right of the right margin, but not in left margins. Also, you'll notice that the
marginal bars do not appear on incomplete lines, such as this one.

~\sun ,~ microsystems
Revision A of 17 February 1986

Chapter 12 - Drawing Lines and Characters 149

Summary of the . me Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

margin character

.mccN

Not applicable

Tum off margin characters

Specifies that a margin character c appear a distance N to the right of the
right margin after each non-empty text line (except those produced by . t 1).
If the output line is too long (as can happen in nofill mode) the character is
appended to the line. If N is not given, the previous N is used; the initial N is
0.2 inches in nroff and 1 em in troff.

E, m (see Table A-2)

~\sun ~~ microsystems
Revision A of 17 February 1986

13
Character Translations

Character Translations .. 153

13.1. Input Character Translations .. 153

13.2. . ec and . eo - Set Escape Character or Stop Escapes 153

13.3. . cc and . c2 - Set Control Characters .. 154

13.4. . tr - Output Translation ... 154

13.1. Input Character
Translations

13.2. . e c and . eo - Set
Escape Character or
Stop Escapes

13
Character Translations

The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are
accepted, and may be used as delimiters or translated into a graphic with a . t r
(translate) request (refer to the section entitled. tr - Output Translation). All
others are ignored.

The escape character \ introduces escape sequences - meaning the following
character means another character, or indicates some function. A complete list of
such sequences is given in a later chapter. The \ character should not be con­
fused with the ASCII control character ESC of the same name. The escape charac­
ter \ can be input with the sequence \ \. The escape character can be changed
with an . ec (escape character) request, and all that has been said about the
default \ becomes true for the new escape character. \e can be used to print
whatever the current escape character is. If necessary or convenient, the escape
mechanism can be turned off with an . eo (escape oft) request and restored with
the . e c request

Summary of the . e c Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

escape character

.ec c

\

\

Set escape character to \, or to c, if given.

~\sun ,~ microsystems
153 Revision A of 17 February 1986

154 Using nroff and troff on the Sun Workstation

Summary of the . eo Request

~ D~~~

Mnemonic: escape mechanism off

Form of Request: . eo

Initial Value: Escape mechanism is on

If No Argument: Tum escape mechanism off.

Explanation: Tum escape mechanism off.

13.3 •. cc and . c2 - Set Both the control character . and the no-break control character ' may be
Control Characters changed, if desired. Such a change must be compatible with the design of any

macros used in the span of the change, and particularly of any trap-invoked mac­
ros.

Summary of the . c c Request

Item Description

Mnemonic: control character

Form of Request: • cc c

Initial Value:

If No Argument:

Explanation: Set the basic control character to c, or reset to ' . '.

Summary of the . c2 Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

13.4 .. tr - Output
Translation

no-break control character

• c2 c

Set the no-break control character to c, or reset to ' , '.

One character can be made a stand-in for another characterusing·the . tr
(translate) request. All text processing (for instance, character comparisons)
takes place with the input (stand-in) character that appears to have the width of
the final character. The graphic translation occurs at the moment of output
(including diversion).

~\sun ,~ microsystems
Revision A of 17 February 1986

Chapter 13 - Character Translations 155

Summary of the . t r Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

translate

.tr abed

Not Applicable

No translation

Translate a into b, c into d, etc. If an odd number of characters is given, the
last one is mapped into the space character. To be consistent, a particular
translation must stay in effect from input to output time.

o (see Table A-2)

~\sun ,~ microsystems
Revision A of 17 February 1986

14
Automatic Line Numbering

Automatic Line Numbering .. 159

14.1. . nm-Number Output Lines :.. 159

14.2. . nn - Stop Numbering Lines ... 160

14
Automatic Line Numbering

14.1. . nm - Number Output
Lines

Output lines may be numbered automatically via the . nm (number)
request. Refer to the following table for a summary of the . nm request.
When in effect, a three-digit, arabic number and a digit-space begins each
line of output text. The text lines are thus offset by four digit-spaces, and
otherwise retain their line length. To keep the right margin aligned with an
earlier margin, you may want to reduce the line length by the equivalent of
four digit spaces. Blank lines, other vertical spaces, and lines generated by

3

6

9

12

· t 1 are not numbered. Numbering can be temporarily suspended with the
· nn (no number) request (see below), or with an . nm followed by a later
· nm +0. In addition, a line number indent I, and the number-text separa­
tion S may be specified in digit-spaces. Further, it can be specified that only
those line numbers that are multiples of some number M are to be printed
(the others will appear as blank number fields).

Summary of the . nm Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

numbering

.nm±NMSI

Line numbering turned off.

Line numbering turned off.

Tum on line numbering if ±N is given. The next output line numbered is
numbered ±N. Default values are M = 1, S = 1, and 1= O. N is the line number
counter (or incrementer if you use ±N), M is the multiple of the numbered
lines to be printed on the page, S is the spacing between line numbers and
text, and I is the amount of indent for the line numbers. Parameters
corresponding to missing arguments are unaffected; a non-numeric argument
is considered missing. In the absence of all arguments, numbering is turned
off; the next line number is preserved for possible further use in number
register In.

E (see Table A-2)

~\sun ,~ microsystems
159 Revision A of 17 February 1986

160 Using nroff and troff on the Sun Workstation

14.2. . nn - Stop Numbering
Lines

When you are using the . run request to number lines (as discussed above), you
can temporarily suspend the numbering with the . nn (no number) request.

15

18

21

Summary o/the . nn Request
Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

no numbering

.nnN

Not applicable

N=l

The next N text output lines are not numbered.

E (see Table A-2)

As an example, the paragraph portions of this chapter are numbered with
M= 3: . run 1 3 was placed at the beginning of the chapter; . nm was
placed at the end of the first paragraph; and . run +0 was placed in front of
this paragraph; and . nm finally placed at the end. Line lengths were also
changed (by \ w ' 00 00 ' u) to keep the right side aligned.

Another example is

.run +5 5 x 3

which turns on numbering with the line number of the next line to be 5
greater than the last-numbered line, M = 5, spacing S is untouched, and with
the indent I set to 3.

~\sun ,~ microsystems
Revision A of 17 February 1986

15
Conditional Requests

Conditional Requests ... 163

15.1. . if - Conditional Request .. 163

15.2. . ie and . el- If-Else and Else Conditionals 166

15.3. . ig - Ignore Input Text .. 166

IS.1. . if - Conditional
Request

15
Conditional Requests

Suppose we want the . SH macro to leave two extra inches of space just before
section 1, but nowhere else. The cleanest way to do that is to test inside the . S H
macro whether the section number is 1, and add some space if it is. The . if
request provides the conditional test that we can add just before the heading line
is output:

.if \\n(5H=1 .sp 2i \" first section only

The condition after the . if can be any arithmetic or logical expression. If the
condition is logically true, or arithmetically greater than zero, the rest of the line
is treated as if it were text - here a request. If the condition is false, or zero, or
negative, the rest of the line is skipped.

It is possible to perform more than one request if a condition is true. Suppose
several operations are to be done before section 1. One possibility is to define a
macro . S 1 and invoke it if we are about to do section 1 (as determined by a
. if) .

. de 51
processing for section 1 ---

.de 5H

.if \\n(5H=1 .51

An alternate way is to use the extended form of the . if, like this:

.if \\n(5H=1 \{--- processing for section 1 ----\}

The braces \ {and \} must occur in the positions shown or you will get unex­
pected extra lines in your output. troff also provides an 'if-else' construction,
which we will not go into here.

A condition can be negated by preceding it with !; we get the same effect as
above (but less clearly) by using

~\sun ~ microsystems
163 Revision A of 17 February 1986

164 Using nroff and troff on the Sun Workstation

.if !\\n(SH>1 .S1

There are a handful of other conditions that can be tested with . if. For exam­
ple, is the current page even or odd?

.if e .tl "even page title"

.if 0 .tl "odd page title"

gives facing pages different titles when used inside an appropriate new page
macro.

Two other conditions are t and n, which tell you whether the formatter is
troff or nroff .

. if t troff stuff

.if n nroff stuff

Finally, string comparisons may be made in an . if:

.if , string1'string2' stuff

does 'stuff' if string1 is the same as string2. The character separating the strings
can be anything reasonable that is not contained in either string. The strings
themselves can reference strings with \ *, arguments with \ $, and so on.

In the following table, c is a one-character, built-in condition name, ! signifies
not, N is a numerical expression, string1 and string2 are strings delimited by any
non-blank, non-numeric character not in the strings, and anything represents
what is conditionally accepted.

~\sun ,~ microsystems
Revision A of 17 February 1986

Chapter 15 - Conditional Requests 165

Summary of the . if Requests

Item Description

Mnemonic:lif, if-else, else

Form of Request:

Initial Value:

If No Argument:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

· if c anything

Not Applicable

Not Applicable

If condition c true, accept anything as input. In multi-line case use \{ any­
thing \}.

· if! c anything

If condition c false, accept anything.

· if N anything

If expression N > 0, accept anything.

· if! N anything

If expression N ~ 0, accept anything.

· if ' string] 'string2 ' anything

If string] identical to string2, accept anything.

· if !' string] 'string2 ' anything

If string] is not identical to string2, accept anything.

· i e c 'anything

If portion of if-else (like above if fonns).

· e 1 anything

Else portion of if-else.

~\sun ~ microsystems
Revision A of 17 February 1986

166 Using nroff and troff on the Sun Workstation

Table 15-1

15.2. . ie and . e1 - If-Else
and Else Conditionals

15.3. . ig - Ignore Input
Text

The built-in condition names are:

Built-In Condition Namesfor Conditional Processing

Condition
Name True If

0 Current page number is odd
e Current page number is even
t Formatter is troff
n Formatter is nroff

If the condition c is true, or if the number N is greater than zero, or if the strings
compare identically (including motions and character size and font), anything is
accepted as input. If a ! precedes the condition, number, or string comparison,
the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped
over. The anything can be either a single input line (text, macro, or whatever) or
a number of input lines. In the multi-line case, the first line must begin with a
left delimiter \ { and the last line must end with a right delimiter \}.

The request. ie (if-else) is almost identical to . if except that the acceptance
state is remembered. A subsequent and matching. e1 (else) request then uses
the reverse sense of that state. . ie - . e1 pairs may be nested. Refer to the
Summary of the . if Requests for summaries of . ie and . e1.

Some examples are:

.if e .tl 'Even Page %'"

which outputs a title if the page number is even; and

.ie \n%>l \{\
'sp O.Si
. tl ' Page %'"
'sp - 1. 2i \}
.el .sp -2.Si

which treats page 1 differently from other pages.

Another mechanism for conditionally accepting input text is via the . ig
(ignore) request. Basically, you place the . ig request before a block of text
you want to ignore:

~\sun ~~ microsystems
Revision A of 17 February 1986

Chapter 15 - Conditional Requests 167

. ig start of ignored block of text

block of text you don't want to appear in the printed output

end of ignore block signalled with . •

The . ig request functions like a macro definition via the . de request except
that the text between the . ig and the tenninating .. is discarded instead of
being processed for printing.

You can give the . ig request an argument - that is, an

.ig xy

request ignores all text up to and including a line that reads

.xy

which looks just like a request:

.ig ZZ start of ignored block of text

block of text you don't want to appear in the printed output

• ZZ end of ignore block signalled with • zz

You can of course combine the . i g request with the other conditionals to
ignore a block of text if a condition is satisfied. For example, you might want to
omit blocks of text if the printed pages are destined for different audiences:

~\sun ,~ microsystems
Revision A of 17 February 1986

I

168 Using nroff and troff on the Sun Workstation

.nr W 1 This manual is/or Wizards only

further processing

.if \nW .ig WZ If the manual is for wizards

Tutorial material beneath the attention of wizards

.WZ end of ignored block of text

Summary of the . ig Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

ignore

.igyy

Not applicable

Ignore text up to a line starting with . .

Ignore input lines up to and including a line starting with . yy - use . . if
no argument is specified on the request. . ig behaves exactly like the . de
(define macro) request except that the input is discarded. The input is read in
copy mode, and any auto-incremented number registers will be affected.

~\sun ~ microsystems
Revision A of 17 February 1986

16
Debugging Requests

Debugging Requests ... 171

16.1. . pm - Display Names and Sizes of Defined Macros 171

16.2. . f 1 - Flush Output Buffer .. 172

16.3. . ab - Abort .. 172

16.1. . pm - Display Names
and Sizes of Defined
Macros

16
Debugging Requests

troff and nroff resemble languages for programming a typesetter rather
than a mechanism to describe how a document should be put together. There are
times when you just can't figure out why things are going wrong and not generat­
ing results as advertised. The requests described here are for dyed-in-the-wool
macro wizards.

The . pm (print macros) request displays the names of all defined macros and
how big they are. Why would anybody want to do such a thing? Well, if you're
using a macro as a diversion, you might find out (by printing its size) that it is far
bigger than you expect (that it's swallowing your entire file).

Summary of the . pm Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

print macros

.pmt

Not applicable

All

Print macros. The names and sizes of all of the defined macros and strings
are printed on the user's terminal; if t is given, only the total of the sizes is
printed. The sizes are given in blocks of 128 characters.

171 Revision A of 17 February 1986

172 Using nroff and troff on the Sun Workstation

16.2. . f 1 - Flush Output
Buffer

The . f 1 (flush) request flushes the output buffer - this can be used when
you're using nroff interactively.

Summary of the . f1 Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

16.3. . ab - Abort

flush

.fl

Not applicable

adjusting is turned off

Flush output buffer. Used in interactive debugging to force output.

A final useful request in the debugging category is the . ab (abort) request
which basically bails out and stops the formatting.

Summary of the . ab Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

abort

• ab text

Not applicable

No text is displayed

Displays text and terminates without further processing. If text is missing,
'User Abort' is displayed. Does not cause a break. The output buffer is
flushed.

~\sun ~~ mlcrosystems
Revision Aof 17 February 1986

17
Environments

Environments ... 175

17.1. . ev - Switch Environment .. 175

(

\

17.1. . ev - Switch
Environment

17
Environments

As we mentioned, there is a potential problem when going across a page boun­
dary: parameters like size and font for a page title may well be different from
those in effect in the text when the page boundary occurs. traff provides a
very general way to deal with this and similar situations. There are six environ­
ments, each of which has independently-settable versions of many of the parame-
ters associated with processing, including size, font, line and title lengths, .
fill/nofill mode, tab stops, and even partially-collected lines. Thus the titling
problem may be readily solved by processing the main text in one environment
and titles in a separate one with its own suitable parameters.

The command . ev n shifts to environment n; n must be in the range 0 through
2. A . ev command with no argument returns to the previous environment.
Environment names are maintained in a stack, so calls for different environments
may be nested and unwound consistently.

When traff starts up, environment 0 is the default environment, so in general,
the main text of your document is processed in this environment in the absence
of any information to the contrary. Given this, we can modify the . NP (new
page) macro to process titles in environment llike this:

.de NP

.ev 1 \,. shift to new environment

.It 6i \,. set parameters here

.ft R

.ps 10
any other processing

.ev \,. return to previous environment

It is also possible to initialize the parameters for an environment outside the
• NP macro, but the version shown keeps all the processing in one place and is
thus easier to understand and change.

Another major application for environments is for blocks of text that must be
kept together.

A number of the parameters that control the text processing are gathered together
into an environment, which can be switched by the user. The environment
parameters are those associated with requests noting E in their Notes column; in

~\sun ~~ microsystems
175 Revision A of 17 February 1986

176 Using nroff and troff on the Sun Workstation

addition, partially-collected lines and words are in the environment. Everything
else is global; examples are page-oriented parameters, diversion-oriented param­
eters, number registers, and macro and string definitions. All environments are
initialized with default parameter values.

Summary of the . ev Request

Item Description

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

environment

.evN

Switch back to previous environment

Switch to environment N, where O.g{~2. Switching is done in push-down
fashion so that restoring a previous environment must be done with . ev
rather than specific reference.

~\sun ,~ microsystems
Revision A of 17 February 1986

A
traff Request Summary

troff Request Summary ... 179

(

A
traff Request Summary

This appendix is a quick-reference summary of troff and nroff requests.
In the following table, values separated by a : are for nroff and troff
respectively.

The notes in column four are explained at the end of this summary.

Table A-I Summary of nro ff and troff Requests

Request Initial If No
Notes Explanation

Form Value Argument

.ab text none User Abort Displays text and terminates without
further processing; flush output buffer.

.ad c adj,both adjust E Adjust output lines with mode c from
. j .

. af R c arabic Assign format to register R (c=l, i,
I, a, A).

. am xxyy .yy= .. Append to a macro .

. as xx string ignored Append string to string xx.

.bd FN off P Embolden fontF by N-1 units.t

.bd S FN off P Embolden Special Font when current
font is P.t

.bp ±N N=1 B:j:,v Eject current page. Next page is
numberN.

. br B Break .

.c2 c E Set nobreak control character to c.

~\sun ,~ microsystems
179

180

Table A-I Summary oJnroff and troff Requests- Continued

Request Initial IJNo
Notes Explanation

Form Value Argument

.cc c E Set control character to c.

.ce N off N=l B,E Center following N input text lines.

.ch xxN v Change trap location.

.cs FNM off P Constant character space (width) mode
(fontF).t

.cu N off N=l E Continuous underline in nroff; like
. ul in troff .

. da xx end D Divert and append to xx.

.de xxyy .yy= .. Define or redefine macro xx,· end at call
ofyy .

. di xx end D Divert output to macro xx.

.ds xx string ignored Define a string xx containing string.

.dt Nxx off D,v Set a diversion trap.

. ec c Set escape character .

.el anything Else portion of if-else.

. em xx none none End macro is xx .

. eo on Tum off escape character mechanism .

. ev N N=O previous Environment switched (push down) .

. ex Exit from nroff/troff .

.fc ab off off Set field delimiter a and pad character
b .

. fi fill B,E Fill output lines.

.fl B Flush output buffer.

.fp NF R,I,B,S ignored Font named F mounted on physical
position 1~~4.

~\sun ,~ microsystems

Appendix A - troff Request Summary 181

Table A-I Summary oJnroff and troff Requests- Continued

.ft F

.fz SF N

.he c

Request
Form

.hw word1 ...

.hy N

· ie c anything

· if c anything

· if ! c anything

· if N anything

· if ! N anything

Initial
Value

Roman

none

\%

ignored

on

· if 'string1 'string2 ' anything

· if ! 'string1 'string2 ' anything -

. ig yy

. in ±N N=O

.it Nxx

.1e c

. 1g N on

.11 ±N 6.5 in

.1s N N=l

'J\sun ,~ microsystems

If No
Argument

previous

\%

previous

. yy= ..

previous

off

none

on

previous

previous

Notes

E

E

E

B,E,m

E

E

E,m

E

Explanation

Change to font F = x, xx, or 1 through
4. Also \fx, \f(xx, \tN.

Forces font F or S for special characters
to be in size N.

Hyphenation indicator character c.

Exception words.

Hyphenate. N = mode.

If portion of if-else; all above forms
(like . if).

If condition c true, accept anything as
input, for multi-line use \{anything \}.

If condition c false, accept anything.

If expression N > 0, accept anything.

If expression N S 0, accept anything.

If string] identical to string2, accept
anything.

If string] not identical to string2,
accept anything .

Ignore until call of yy .

Indent

Set an input-line count trap.

Leader repetition character.

Ligature mode on if N>O .

Line length.

Output N-l V s after each text output
line.

182

(

(\

Table A-I Summary oJnroff and troff Requests- Continued

Request Initial lfNo
Notes Explanation

Form Value Argument

.1t ±N 6.5 in previous E,m Length of title.

.me eN off E,m Set margin character c and separation
N .

• mk R none internal D Mark current vertical place in register
R.

.na adjust E No output line adjusting.

.ne N N=IV D,v Need N vertical space (V = vertical
spacing).

.nf fill B,E No filling or adjusting of output lines.

.nh hyphenate E No hyphenation.

.nm±NMSI off E Number mode on or off, set parameters.

.nn N N=l E Do not number nextN lines.

.nr R±NM u Define and set number register R by
±N; auto-increment by M.

.ns space D Tum no-space mode on.

. nx filename end-of-file Next file.

. os Output saved vertical distance .

.pe e % off Page number character.

.pi program Pipe output to program (nroff only).

.pm t all Print macro names and sizes. If t
present, print only total of sizes.

.ps ±N 10-point previous E Point size, also \s±N. t

.p1 ±N 11 in 11 in v Page length.

~pn ±N N=l ignored Next page number is N.

.po ±N 0: 26/27 in previous v Page offset.

~\sun ,~ microsystems

Appendix A-troff Request Summary 183

Table A-I Summary oJnroff and troff Requests- Continued

Request Initial IJNo
Notes Explanation

Form Value Argument

.rd prompt prompt=BEL Read insertion.

.rn xxyy ignored Rename request, macro, or string xx to
yy.

.:en xx ignored Remove request, macro, or string.

. rr R Remove register R .

.rs D Restore spacing. Turn no-space mode
off .

. rt ±N none internal D,v Return (upward only) to marked verti-
cal place .

. so filename Interpolate contents of source file name
when • so encountered .

. sp N N=lV B,v Space vertical distance N in either
direction .

. ss N 12/36 em ignored E Space-character size set to N/36 em. t

.sv N N=lV v Save vertical distance N.

.ta Nt ... 0.8: O.5in none E,m Tab settings: left type, unless
t=R(right), or c(centered).

.tc e space removed E Tab repetition character.

.ti ±N ignored B,E,m Temporary indent.

.tl 'left' center 'right' Three-part title.

.tm string newline Print string on terminal (UNIX stan-
dard message output) .

. tr abed none 0 Translate a into b, c into d, etc. on out-
put.

.uf F Italic Italic Underline font set to F (to be switched
to by .ul) .

. ul N off N=l E Underline N input lines (italicize in
troff).

~\sun ,~ microsystems

I

184

.vs N

.wh Nxx

Table A-I

Request
Form

Summary oJnroff and troff Requests-- Continued

Initial
Value

1I6in: 12pts

IJNo
Argument

previous

Notes

E,p

v

Explanation

Vertical base line spacing (V).

Set location trap. Negative is with
respect to page bottom.

t Point size changes have no effect in nroff.

=1= The use of II , II as the control character (instead of II • ") suppresses the break function.

Table A -2 Notes in the Tables

Note Explanation

B Request nonna1ly causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
o Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical output.
v Default scale indicator - if not specified, scale indicators are ignored.
p Default scale indicator - if not specified, scale indicators are ignored.
m Default scale indicator - if not specified, scale indicators are ignored.
u Default scale indicator - if not specified, scale indicators are ignored.

B
Font and Character Examples

Font and Character Examples ... 187

B.1. Font Style Examples ... 187

B.2. Non-ASCII Characters and minus on the Standard Fonts 188

B.3. Non-ASCII Characters and i, {, '<, +, -, =, and * on the Special
Font ... 188

B.l. Font Style Examples

B
Font and Character Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point,
and with non-alphanumeric characters separated by l/.t-em space. They are Times
Roman, Italic, Bold, and a special mathematical font.

Times Roman

abcdefghijk1mnopqrstuvwxyz
ABCDEFGillJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+-.,/:;=?[]I
• 0 - - _ Y4 1h % fi fl ff ffi ffl 0 t ' ¢ ® © TM

Times Italic

abcdeJghijklmnopqrstuvwxyz
ABCDEFGHllKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+-.,I:;=?[JI
• 0- - _1/4 1h 3/4fiflffffiffl 0 t' ¢ ® © TM

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$% &()"*+-.,/: ;=?[] I
• 0 - - _ Ij4 1h 0/4 fi fI ff ffi fft 0 t ' ¢ ® © TM

Special Mathematical Font

"'\"_ '-I<>{}#@+-=*
a J3 yo E ~ 11 e t K A Jl v ~ 0 1t P cr C; 't U <I> X 'V ro
r~eASnLY<I>'PQ

-v-';?-:;;'=-::::;C-7~ i -!.x+±unc::::>~::::>ooa
§ V --, f oc 0 E * => <= lOr L 1 J i r I LJ rll

~\sun ,~ microsystems
187

188

B.2. Non-ASCII Characters
and minus on the
Standard Fonts

B.3. Non-ASCII Characters
and " ',_, +, -, =, and *
on the Special Font

Table B-1

Char

+

=

*
§

-
/
a

~
'Y
0
e
C;
11
e
t

Input Character Input Character
Char Name Name Char Name Name

close quote fi \(fi fi
open quote tl \(f1 fl

\(em 3/4 Em dash ff \(ff ff
hyphen or ffi \(Fi ffi

\(hy hyphen ftl \(F1 ffl
\- current font minus 0 \(de degree

• \ (bu bullet t \(dg dagger
0 \(sq square \(fm foot mark

\(ru rule ¢ \(ct cent sign
v.. \(14 114 ® \(rg registered
1J2 \(12 112 © \(co copyright
3/4 \(34 3/4 TM \(tm trademark

The ASCII characters @, #, ", " ',<, >, \, {,},., A, and _ exist only on the special
font and are printed as a I-em space if that font is not mounted. The following
characters exist only on the special font except for the upper case Greek letter
names followed by t which are mapped into upper case English letters in what­
ever font is mounted on font position one (default Times Roman). The special
math plus, minus, and equals are provided to insulate the appearance of equations
from the choice of standard fonts.

Summary of t ro f f Special Characters

Input Character Input. Character
Name Name Char Name Name

\(p1 math plus 0- \(*s sigma
\ (mi math minus <; \(ts terminal sigma
\(eq math equals 't \(*t tau
\(** math star u \(*u upsilon
\(sc section <t> \(*f phi
\(aa acute accent X \(*x chi
\(ga grave accent '" \(*q psi
\(u1 underrule (0 \(*w omega
\(sl slash (matching backslash) A \(*A Alphat
\(*a alpha B \(*B Betat
\(*b beta r \(*G Gamma
\(*g gamma ~ \(*D Delta
\(*d delta E \(*E Epsilont
\(*e epsilon Z \(*z Zetat
\(*z zeta H \(*Y Etat
\(*y eta e \(*H Theta
\(*h theta I \(*1 Iotat
\(*i iota K \(*K Kappat

~\sun ,~ microsystems

Appendix B - Font and Character Examples 189

Table B-1 Summary oftroff Special Characters- Continued

Input Character Input Character
Char Name Name Char Name Name

1C \(*k kappa A \(*L Lambda
A, \(*1 lambda M \(*M Mut

I.l \(*m mu N \(*N Nut
v \(*n nu :5 \(*C Xi

~ \(*e xi 0 \(*0 Omicront
0 \(*0 omicron II \(*P Pi
1t \(*p pi P \(*R Rhot
p \(*r rho L \(*8 Sigma
T \(*T Taut 00 \(if infinity
y \(*U Upsilon a \ (pd partial derivative
<I> \(*F Phi V \(gr gradient
X \(*X Chit --, \(no not
'I' \(*Q Psi J \(is integral sign
n \(*W Omega oc: \(pt proportional to
~ \(sr square root 0 \(es empty set

\(rn root en extender E \ (mo member of
~ \(>= >= I \(br box vertical rule
~ \«= <= * \(dd double dagger
- \(== identically equal =) \(rh right hand
= \(-= approx = <= \(lh left hand

\(ap approximates I \(or or
'¢ \ (! = not equal 0 \(ei circle
~ \ (-> right arrow r \(It left top of big curly

bracket
~ \«- left arrow L \(lb left bottom
i \(ua up arrow 1 \(rt right top
J, \ (da down arrow J \(rb right bot
X \ (mu multiply ~ \(lk left center of big

curly bracket
+ \(di divide ~ \(rk right center of big

curly bracket
± \(+- plus-minus I \(bv bold vertical
u \(eu cup (union) l \(If left floor (left bottom

of big square bracket)
(l \(ea cap (intersection) J \(rf right floor (right

bottom)
c \(sb subset of r \(le left ceiling (left top)
:::> \(sp superset of 1 \(re right ceiling (right top)
k \(ib improper subset
~ \(ip improper superset

(
\
\

c
Escape Sequences

Escape Sequences .. 193

Table C-1

c
Escape Sequences

Note: Theescapesequences \\, \., \", \$, *, \a, \n, \t,and
\(newline) are interpreted in copy mode (see Chapter 10).

troff Escape Sequences

\\
\e
\ '

\'
\-

\ .

Escape
Sequence

\ (space)
\0
\1
\A

\&
\ !
\"
\$N
\%

\ (xx
*x, * (xx
\a
\b' abc ... '
\c

Meaning

\ (to prevent or delay the interpretation of \)
Printable version of the current escape character.
, (acute accent); equivalent to \ (aa
, (grave accent); equivalent to \ (ga
- Minus sign in the current font

Period (dot) (see. de)
Unpaddable space-size space character
Digit-width space
116 em-narrow space character (zero width in nroff)
11 12-em half-narrow space character (zero width in
nroff)

Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument 1$;N$;9
Default optional hyphenation character

Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing

\d Forward (down) 1I2-em vertical motion (1I2-line in
nroff)

\ fx, \ f (xx, \ fN Change to font named x or xx, or position N

.\sun ,~ microsystems
193

194

Table C-1 troff Escape Sequences-Continued

Escape
Sequence

\h'N'
\kx
\1' Nc'

\L' Nc'

\nx, \n (xx
\0' abc ... '
\p
\r

\sN, \s±N
\t
\u

\v'N'
\w' string'

\x' N'

\zc
\{
\}
\ (newline)
\X

~\sun ,~ microsystems

Meaning

Local horizontal motion; move right N (negative=left)
Mark horizontal input place in register x
Horizontal line drawing function (default character is
baseline rule in troff or underline in nroff;
optionally with character c)

Vertical line drawing function (default character is box
rule; optionally with character c)
Interpolate number register x or xx
Overstrike characters a, b, c, ...
Break and spread output line
Reverse one-em vertical motion (reverse line in
nroff)

Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1I2-em vertical motion (l/2-line in
nroff)
Local vertical motion; move downN (negative=up)
Interpolate width of string

Extra line-space function (negative before, positive
after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

D
Predefined Number Registers

Predefined Number Registers .. 197

D
Predefined Number Registers

Table 0-1 General Number Registers

Register
Name

c.
%
ct
dl
dn

dw
dy
hp
In
mo

nl
sb
st
yr

Description

Input line-number in current input file; same as . c.
Current page number.
Character type (set by width function).
Width (maximum) of last completed diversion.
Height (vertical size) of last completed diversion.

Current day of the week (1-7).
Current day of the month (1-31).
Current horizontal place on input line.
Output line number.
Current month (1-12).

Vertical position of last printed text baseline.
Oepth of string below base line (generated by width function).
Height of string above base line (generated by width function).
Last two digits of current year.

Table 0-2 Read-Only Number Registers

Register
Name

. $
• A
• H
• L
• P

. T

. v

~\sun ~~ microsystems

Description

Number of arguments available at the current macro level.
Set to 1 in troff, if -a option used; always 1 in nroff .
Available horizontal resolution in basic units .
Current line-spacing parameter (. Is) .
1 if current page is printed, otherwise zero .

Set to 1 in nroff, if -T option used; always 0 in troff .
Available vertical resolution in basic units .

197

198

Table D-2 Read-Only Number Register~ Continued

Register
Name

. a

. c

.d

. f

. h

. i

· j
. k

. 1

. n

.0

. p

· s

. t

. U

. v

. w

. x

. y

• z

~\sun ,~ microsystems

Description

Post-line extra line-space most recently utilized using \x' N' .
Number of lines read from current input file .
Current vertical place in current diversion; equal to nl, if no
diversion.

Current font as physical quadrant (1-4) .
Text baseline high-water mark on current page or diversion .
Current indent .
Current adjustment mode and type.
Horizontal text portion size of current output line .

Current line length .
Length of text portion on previous output line .
Current page offset.
Current page length .
Current point size.

Distance to the next trap .
Equal to 1 in fill mode and 0 in nofill mode .
Current vertical line spacing .
Width of previous character .
Reserved version-dependent register .

Reserved version-dependent register .
Name of current diversion (a string, not a number).

(

E
troff Output Codes

traff Output Codes .. 201

E.l. Codes 0 Oxxxxxx - Flash Codes to Expose Characters 202

E.2. Codes lxxxxxxx - Escape Codes Specifying Horizontal
Motion ... 203

E.3. Codes Ollxxxxx- Lead Codes Specifying Vertical Motion 203

EA. Codes 010 lx.nx - Size Change Codes .. 203

E.S. Codes 010 Ox.nx - Control Codes ... 204

E.6. How Fonts are Selected ... 20S

E.7. Initial State of me C/ NT .. 206

r
\

BIT 7

Major Code

Type

E
troff Output Codes

As we mentioned before, troff is geared up to produce binary codes for a
phototypesetter called a CIAIT. This appendix describes the codes for the C/A(f
in detail. This information is for people who want to translate CI AlTcodes for
other purposes.

The basic mechanism of the CI AIT typesetter is a revolving drum divided into
four quadrants. On each quadrant of the drum you can mount a strip of film -
one strip offilm corresponds to a font. Each font has 108 characters in it. Char­
acters are exposed on the final photographic paper by 'flashing' a light through
the appropriate position of the film strip on the drum. The actual font to be used
is selected (as you will see later) by a combination of 'rail', 'mag', and 'font­
half' - the terms 'rail' and 'mag' are hangovers from very old hot-lead typeset­
ting technology and have no place in electro-mechanical systems, but they were
carried over because typesetters can't handle new things. Point size changes are
handled in the CI AIT by a series of magnifying lenses.

The CIAIT's basic unit of length (machine unit) is 11432 inch (there are six of
these units to a typesetter's 'point'). The quantum of horizontal motion is one
unit. The quantum of vertical motionis three units (11144 inch or half a point).
troff uses the same system of units in its internal computations.

The CIAIT phototypesetter is driven by sending it a sequence of one-byte (eight­
bit byte) codes to specify characters, fonts, point sizes, and other information.
The encoding scheme used was obviously designed by someone wanting to send
the minimum amount of information across a communications channel at the
expense of doing vast amounts of work in the computer driving the typesetter.

A complete CI AIT file is supposed to start with an initialize code (described
later), followed by an escape-16 code, then the body of the text destined for the
CIAIT. The whole file ends with 14 inches of trailer, followed by a stop code.
In practice, looking at troff's output file has generated disagreements on what
the file really looks like, but we don't have a CI Aff around to really try it out.

Bit 7 of a code byte classifies the byte into one of two major types:

6 5 4 3 2 1 o
Further Encoding

201

202

BIT

BIT

BIT

BIT

7

Bit 7 = 1

Escape Code

7

The top bit (bit 7) is encoded thus:

1 - An Escape Code, specifying horizontal motion, as described below.

6 5 4 3 2 1 o

One's Complement of Amount of Motion

0- indicates that bits 7 and 6 are used to further encode the code byte, as fol­
lows:

6 5 4 3 2 1 o
Flash Code or

Control Code
Further Encoding

The two upper bits have these meanings:

00 - A Flash Code, which selects a character out of a font, as described below.

7 6 5 4 3 2 1 o
Bits 6 and 7 = 00

Flash Code
Character Number to Flash (1-63)

7

01 - A Control Code, which is thenfurther encoded into one of two categories
depending on whether the next bit is a one or a zero:

6 5 4 3 2 1 o
Control Code Further Encoding

1 - This is a lead code, described below, or

o - in which case the control code is further encoded into one of three
categories of:

o Initialization and termination.

o Selecting fonts.

o Specifying the direction of motion for escapes and leading.

We have finally reached the end of this encoding scheme. The following sections
discuss each type of code in detail.

E.l. Codes 0 Oxxx.xxx - Flash
Codes to Expose
Characters

A code with the bits six and seven equal to zero (0 Oxxx.xxx) is a flash code. A
flash code specifies flashing one of 63 characters - the lower six bits of the flash
code specify which character to flash. This is not enough character combinations
to select even all the characters within a single font (there are 108 characters per
font) and so there are control codes (described later) to select the font and which
half of the font. Given that a specific font is selected via the rail, mag, and (for
the eight-font C/A/T) the tilt codes, you then select an upper-font-half or a
lower-font-half. The lower-font-halfis the first 63 characters of the font, and the
upper-font-halfis the remaining 45 characters of the font. A flash code of greater

E.2. Codes 1.xx.nxxx­
Escape Codes Specifying
Horizontal Motion

E.3. Codes 0 llxx:o:x - Lead
Codes Specifying
Vertical Motion

E.4. Codes 0 10 l.:o:xx - Size
Change Codes

Table E-1

Point-Size

6
7
8
9

10
11
12
14

Appendix E - troff Output Codes 203

than 46 in the upper-half of the font is considered illegal.

A code with bit seven equal to 1 (lxxxxxxx) is an escape code. An escape code
specifies horizontal motion. The C/ Arr is a boustrophedonic device - that is, it
can move in both directions, and so the direction of motion is specified by one of
the control codes described later on. The amount of horizontal motion is
specified by the one's complement of the lower seven bits of the escape code.

A codes with the top three bits equal to 011 is a lead code. A lead code is a
subset of the control codes in that the top three bits are 0 11. Such a code
specifies vertical motion. The amount of the vertical motion is specified by the
one's complement of the lower five bits, in vertical quanta. 'Lead' is a
typesetter's term deriving from the days of hot-lead machines - the terminology
sticks with us because the industry moves slowly.

A byte with the top four bits equal to 0101 is a size-change code. Such a code
specifies movement of a lens turret and a doubler lens to change the point size of
the characters. The size-change codes are as follows:

Size Change Codes

Binary Code Octal Code Point-Size Binary Code Octal Code

01011000 0130 16 01011001 0131
01010000 0120 18 01010110 0126
01010001 0121 20 01011010 0132
01010111 0127 22 01011011 0133
01010010 0122 24 01011100 0134
01010011 0123 28 01011101 0135
01010100 0124 36 01011110 0136
01010101 0125

Changes in size using the doubler lens change the horizontal position on the
page:

If you change from: Follow the change with:

Single to double A forward escape of 55 quanta

Double to single A reverse escape of 55 quanta

~\sun ~~ microsystems

204

Table E-2 Single Point-Sizes versus Double Point-Sizes

Single Double

6 16
7 20
8 22
9 24

10 28
11 36
12
14
18

E.S. Codes 010 O.:o:xx - A byte with the top four bits equal to 0100 is a control code. Not all of the
Control Codes control codes have meaning to the typesetter. The control codes are in three

classes, namely:

o Initialization and termination.

o Selecting fonts.

o Specifying the direction of motion for escapes and leading. The control
codes and their meanings are:

(

Table E-3

E.6. How Fonts are Selected

Appendix E - troff Output Codes 205

CIAIT Control Codes and their Meanings

Category Meaning Binary Code Octal Code

Initializing Initialize 01000000 0100
and Tenninating Stop 01001001 0111

Upper Rail 01000010 0102
Lower Rail 01000001 0101
Upper Mag 01000011 0103

Selecting Fonts
Lower Mag 01000100 0104
Tilt Up 01001110 0116
Tilt Down 01001111 0117
Upper Font Half 01000110 0106
Lower Font Half 01000101 0105

Specifying Direction Escape Forward 01000111 0107
Escape Backward 01001000 0110

Of Motion Lead Forward 01001010 0112
Lead Backward 01001100 0114

Note that tilt up and tilt down are unimplemented op-codes on the four-font
C/A/T. However, the illustrious hackers at Berkeley implemented a program
called rvcat to drive the Versatec or the Varian printers, and they used the
0116& code to mean 'multiply the next lead-code by 64' to avoid having enor­
mous runs of small lead-codes.

Fonts are selected by a combination of rail, mag, and tilt. The tilt codes exist
only on the eight-font C/A/T and this is the only difference between the two
machines that is visible to the user. The standard version of troff doesn't
know about the eight-font machine - University of Illinois is one of the places
that hacked over troff to make it understand the eight-font C/AJT. The
correspondence between rail, mag, and tilt codes is shown in this table:

~\sun ~~ microsyslems

206

Table E-4 Correspondence Between Rail, Mag, Tilt, and Font Number

Rail Mag Tilt Four-Font Eight-Font

Lower Lower Up 1 1
Lower Lower Down 1 2
Upper Lower Up 2 3
Upper Lower Down 2 4
Lower Upper Up 3 5
Lower Upper Down 3 6
Upper Upper Up 4 7
Upper Upper Down 4 8

E.7. Initial State of the CIAIT For those wishing to write postprocessors to hack over CINT codes, here is the
initial state of the beast:

Attribute Initial State

Escape Forward

Lead Forward

Font-Half Lower

Rail Lower

Mag Lower

Tilt Down

t)~ll.n
"V. mICrOSYSlems

/
\

Index

Special Characters
· $ (number of arguments) number register, 113
\& (zero-width non-printing) function, 141
% (page-number) number register, 44, 125
\ (unpaddable space) function, 139
\ ... (thin space) function, 140
\ I (thick space) function, 140

o
\ 0 (digit-size space) function, 138

A
\a (leader character) function, 76
· a (post-line extra space) number register, 54
· ab (abort) request, 172
abort, 172
access format

for number registers, 129
accessing strings, 102
· ad (adjust) request, 21
adjust request, 21
adjusting, 17

center, 21
flush left, ragged right, 21
flush right, ragged left, 21
justified, 21
left, ragged right, 21
right, ragged left, 21

· af (format of number register) request, 129
· am (append to a macro) request, 116
append to a diversion, 118
append to a macro, 116
append to string, 103
arguments, 113

macros, 113
arithmetic expressions

with number registers, 128
· as (append to string) request, 103
auto-incrementing number registers, 127
automatic hyphenation, 24

B
\b (bracket) function, 145
basic request, 8
· bd (bold face) request, 64

-207-

begin page, 43
blank lines, 19
bold-face request, 64
box lines, 148
• bp (start new page) request, 43
· br (break lines) request, 20, 19
bracket drawing function, 145
break request, 19,20

C
\c (continuation line) function, 20
C/AffCodes

control, 202
escape, 202
flash,202,202

CI Aff File Organization, 201
• c2 (set no-break control character) request, 154
• cc (set control character) request, 154
• ce (center lines) request, 28, 27 thru 28
center request, 27
centered tabs, 72
• ch (change position of a trap) request, 120
change bars, 148
change position of a trap, 120
character SUbstitutions, 154
character translations, 154
comments, 9
concealed newlines, 10
conditional page break, 44
conditional processing, 163
conditional processing of input, 163
conditional request

.el,165

.ie, 165

.if,163
• ig, 166

continuation line, 20
continuation lines, 10
continuously underline request, 29
control character, 154

no-break, 154
control code, 202
control lines, 8
copy mode, 116
creating number registers, 125 .

Index Continued

· es (set constailt character-space width mode) request, 57
et (character type) number register, 144
• eu (continuously underline) request, 29

D
d (move down) function

\d (move down) function, 135
· d (vertical place in current diversion) number register, 118
• da (append to a diversion) request, 118
· de (define macro) request, 109
define macro, 109
defining strings, 101
deleting number registers, 131
device resolution, 10
· di (divert text) request, 118
diversion, 117, 118

append to, 118
diversion traps, 119, 120
divert text, 118
dl (width of last finished diversion) number register, 117
d.n (height of last finished diversion) number register, 117
drawing boxes, 148
drawing brackets, 145
drawing horizontal lines, 146
drawing vertical lines, 146, 147
· ds (define string) request, 101
· dt (set a diversion trap) request, 120
dy (day of month) number register, 125

E
· ee (set escape character) request, 153
· el (else conditional) request, 165
• em (set the end-of-processing trap) request, 121
end of file, 19
end of sentence, 18
end-of-processing traps, 121
environments, 175
• eo (set escape off) request, 153
escape character, 153
escape code, 202
• ev (switch environment) request, 175
· ex (terminal message) request, 98
expressions

with number registers, 128

F
· f (current font) number register, 66
· f e (set field characters) request, 78
· f i (fill) request, 23
field character, 78
fields, 78
fill request, 23
filler character, 18
filling, 17
· f 1 (flush buffer) request, 172
flash code, 202, 202
flush output buffer, 172
font position request, 63

footers, 85, 89
force font size request, 63
• fp (change font position) request, 63
· ft (set font) request, 62
• fz (force font size) request, 63

G
general number registers

% - page-number, 44, 125
et -character type, 144
dl - width of last finished diversion, 117
dn - height of last finished diversion, 117
dy - day of month, 125
mo -month of year, 125
n 1 - vertical position of last baseline, 125, 117
sb - string depth below baseline, 144
st - string height above baseline, 144
yr -last two digits of year, 125

get vertical space request, 49

H
\h (horizontal motion) function, 137
• h (text high-water mark) number register, 18, 118
half em-space, 140
half-line motions

\d (move down) function, 135
\u (move up) function, 135

hanging indent, 40
hard blank, 17
· he (hyphenation character) request, 27
headers, 85, 89

-208-

horizontal lines, 146
horizontal motion, 137, 138, 139, 140, 142
• hw (hyphenate word) request, 26
• hy (hyphenate) request, 24, 25
hyphenate request, 25
hyphenation, 24

automatic, 24
specifying indicator character, 27
specifying location, 26
specifying special cases, 26
turnoff,24
tum on, 24

hyphenation control, 24
hyphenation indicator, 25

I
· i (current indent) number register, 39, 41
· ie (if-else conditional) request, 165
· if (conditional processing) request, 163
· ig (ignore lines) request, 166
ignoring input lines, 166
· in (indent) request, 38
in-line functions

\ (unpaddable space) function, 139
\& (zero-width non-printing) function, 141
\ ... (thin space) function, 140
\ I (thick space) function, 140
\ 0 (digit-size space) function, 138
\a (leader character) function, 76

in-line functions, continued
\b (bracket) function, 145
\ e (continuation line) function, 20
\ d (move down) function, 135
\h (horizontal motion) function, 137
\k (mark horizontal place) function, 144
\1 (horizontal line) function, 147, 146
\0 (overstrike) function, 142
\p (break and spread) function, 19
\r (reverse line) function, 146
\ u (move up) function, 135
\ v (vertical motion) function, 136
\ w (width) function, 143
\x (get extra line space) function, 54
\ z (zero motion) function, 142

include
from file, 93
from standard input, 96

incrementing number registers, 127
indent, 38

temporary, 39
indenting first line of paragraph, 39
input-line-count traps, 119, 121
interpolating, 125
interpolation format

for number registers, 129
interrupted line, 20
· it (set an input-line count trap) request, 121
italic correction, 140
itemized lists, 40

J
· j (current adjustment indicator) number register, 21

K
\k (mark horizontal place) function, 144

L
\1 (horizontal line) function, 146
\L (vertical line) function, 147, 146
· 1 (line-length) number register, 37
large boxes, 148
· 1 e (set leader character) request, 77
leader character, 76
leaders, 75
left margin, 36
length of title, 87
.1g (set ligature mode) request, 67
ligatures, 67
line adjustment indicators

both, 21
center, 21
left, 21
normal, 21
right, 21

line drawing functions, 146, 147
line indent, 38
line numbering

start, 159
suspend, 160

-209-

line spacing request, 54
line-length, 36
lines

horizontal, 146
vertical, 146, 147

.11 (set line-length) request, 36
local motion, 136
local motions

\ (unpaddable space) function, 139
\& (zero-width non-printing) function, 141
\" (thin space) function, 140
\ I (thick space) function, 140
\ 0 (digit-size space) function, 138
\b (bracket) function, 145
\ d (move down) function, 135
\h (horizontal motion) function, 137
\1 (horizontal line) function, 147, 146
\0 (overstrike) function, 142
\r (reverse line) function, 146
\ u (move up) function, 135
\ v (vertical motion) function, 136
\z (zero motion) function, 142

long lines, 10
.15 (change line spacing) request, 54
• 1 t (set length of title) request, 87

M
macro, 9
macros, 109

append to, 116
arguments, 113
copy mode, 116
define, 109
embedded blanks, 114
invoking, 109
print names and sizes, 171
remove, 111
rename, 112

margin character, 148
mark vertical place, 118
mark vertical position, 45
marking horizontal place, 144
• me (margin character) request, 148
measure, 36
• mk (mark vertical position) request, 45, 118
mo (month of year) number register, 125

N
• n (text length) number register, 18
· na (no adjust) request, 22
• ne (need space) request, 44
need space, 44
newpage, 43
• nf (no fill) request, 23
• nh (no hyphenation) request, 25, 24

Index Continued

n1 (vertical position of last baseline) number register, 125, 117
• nm (number lines) request, 159
• nn (no number) request, 160
no adjust request, 22
no fill request, 23

Index Continued

no hyphenation request, 24, 25
no space mode request, 56
no-break. control character, 154
non-printing character, 141
• nr (set number register) request, 125
.ns (no space mode) request, 56
number registers, 125

access format, 129
auto-incrementing, 127
creating, 125
expressions, 128
interpolating, 125
removing, 131
setting, 125

numbering lines, 159,160
. nx (next file) request, 95

o
\0 (overstrike) function, 142
• 0 (page-offset) number register, 36
Omar Khayyfun, 137
one-twelfth em-space, 140
orphans, 44
· os (output saved vertical space) request, 5S
output saved vertical request, 55
Qverstriking, 142

P
\p (break. and spread) function, 19
· p (page-length) number register, 43
padding indicators, 78
page break., 43
page length, 42
page number, 44, 88
page number character, 88
page traps, 119
page-offset, 36
• pc (set page number character) request, 88
Petronius Arbiter, 38
• pi (pipe to program) request, 95
pipe to program, 95
· pI (set page length) request, 42
place markers

horizontal, 144
· pm (print macros) request, 171
· pn (set page number) request, 44
· po (set page-offset) request, 36
point size request, 51
predefined number registers

% - page-number, 44, 125
• $ - number of arguments, 113
· a -post-line extra space, 54
• d - vertical place in current diversion, 118
· f - current font, 66
· h -. text high-water mark, 18, 118
· i-current indent, 39, 41
· j - current adjustment indicator, 21
• I -line-length, 37
• n - text length, 18
• 0 - page-offset, 36

predefined number registers, continued

-210-

• p - page-length, 43
• s -point-size, 51
· t - distance to next trap, 119
· u - fill mode indicator, 24
· v - vertical spacing, 53
• z -name of current diversion, 118
ct - character type, 144
dl - width of last finished diversion, 117
dn - height of last finished diversion, 117
dy - day of month, 125
mo -month of year, 125
nl- vertical position of last baseline, 125, 117
sb - string depth below baseline, 144
st - string height above baseline, 144
• t - distance to next trap, 117
yr -last two digits of year, 125

print macros, 171
Procrustean mold, 23
. ps (change point size) request, 51

R
\r (reverse line) function, 146
• rd (read standard input) request, 96
read-only number registers

• $ - number of arguments, 113
· a - post-line extra space, 54
· d - vertical place in current diversion, 118
• f - current font, 66
• h - text high-water mark, 18, 118
• i-current indent, 39, 41
· j - current adjustment indicator, 21
• I -line-length, 37
• n - text length, 18
• 0 - page-offset, 36
• p - page-length, 43
• s - point-size, 51
· t - distance to next trap, 119
• u - fill mode indicator, 24
• v - vertical spacing, 53
• z -name of current diversion, 118
· t - distance to next trap, 117

reading from standard input, 96
referencing strings, 102
remove macro definition, 111
remove request, 111
remove string definition, 111
removing number registers, 131
rename macros, 112
rename requests, 112
rename strings, 112
request

remove, 111
rename, 112

requests, 8
• ab - abort, 172
· ad - adjust, 21
· af - format of number register, 129
· am - append to a macro, 116
• as - append to string, 103
• bd - break. line, 64
· bp - begin page, 43

(

requests, continued
• br - break: line, 20, 19
• e2 - set no-break: control character, 154
• ee - set control character, 154
• ee - center lines, 28, 27 thru 28
• eh - change position of a trap, 120
• es - constant spacing, 57
• eu - continuously underline, 29
• da - append to a diversion, 118
• de - define macro, 109
• di - divert text, 118
• ds - define string, 101
• dt - set a diversion trap, 120
• ee - set escape character, 153
• el - else conditional, 165
• em - set the end-of-processing trap, 121
• eo - set escape off, 153
• ev - switch environment, 175
.ex-exitfrom nroff or troff,98
• f e - set field characters, 78
• fi - fill, 23
· f 1 - flush buffer, 172
· fp - font position, 63
· ft - set font, 62
• fz - force font size, 63
• he - hyphenation character, 27
· hw - hyphenate word, 26
· hy - hyphenate, 24, 25
· ie - if-else conditional, 165
· if - conditional processing, 163
· ig - ignore lines, 166
· in - indent, 38
· it - set an input-line count trap, 121
• Ie - set leader character, 77
• Ig - set ligature mode, 67
· 11 - set line-length, 36
· Is -line spacing, 54
• It - set length of title, 87
· me - margin character, 148
• mk - mark vertical position, 45, 118
• na - no adjust, 22
• ne ~ need space, 44
• nf -no fill, 23
• nh - no hyphenation, 25, 24
• nm-number lines, 159
· nn - no numbering, 160
· nr - set number register, 125
· ns - no space mode, 56
· nx - read next source file, 95
• os - output saved vertical space, 55
· pc - set page number character, 88
· pi - pipe to program, 95
· pI - set page length, 42
. pm-print macros, 171
· pn - set page number, 44
· po - set page-offset, 36
• ps - point size, 51
• rd - read from standard input, 96
· rm - remove request, macro, or string, 111
• rn -rename request, macro, or string, 112
• rr - remove number register, 131
• rs - restore space mode, 56
· rt - return to position, 46, 118
· so - switch source file, 93

-211-

requests, continued
• sp - space, 49
• s s - set space size, 57
• sv - save vertical space, 54
• ta - set tab stops, 71
• te - set tab character, 73
• ti - temporary indent, 39
· t 1 - define title, 89
• tm - terminal message, 98
· tr -translate characters, 154
• uf - underline font, 30
• ul - underline, 29
• vs - vertical spacing, 53
• wh - when something, 119, 86

resolution, 10
restore space mode request, 56
return to marked vertical place, 118
return to vertical position, 46
reverse line function, 146
revision bars, 148
right-adjusted tabs, 72

Index Continued

· rm (remove request, macro, or string) request, 111
• rn (rename request, macro, or string) request, 112
• rr (remove number register) request, 131
• rs (restore space mode) request, 56
• rt (return to position) request, 46, 118
rules

horizontal, 146
vertical, 146, 147

running footers, 85, 89
running headers, 85, 89

s
• s (point-size) number register, 51
save vertical space request, 54
saving state, 175
sb (string depth below baseline) number register, 144
sentence

end of, 18
set constant character-space width mode request, 57
set font request, 62
set ligature mode request, 67
set page number, 44
set space-character size request, 57
setting line-length, 36
setting number registers, 125
setting tabs, 71
skipping input lines, 166
· so (switch source) request, 93
• sp (get vertical space) request, 49
space request, 49
spaces, 19
· s s (set space-character size) request, 57
st (string height above baseline) number register, 144
standard input

reading from, 96
start line numbering, 159
start new page, 43
strings, 10 1

accessing, 102

Index Continued

strings, continued
appending to, 103
beginning with blanks, 102
defining, 101
removing, 111
renaming, 112

substituting characters, 154
suspend line numbering, 160
· sv (save vertical space) request, S4
switch source file, 93

T
· t (distance to next trap) number register, 119, 117
· ta (set tab stops) request, 71
tabs

absolute, 72
centered, 72
relative, 72
replacement character, 73
right-adjusted, 72
setting, 71

· tc (set tab character) request, 73
temporary indent of one line, 39
text lines, 8

ignoring, 166
text word, 17
thick space, 140
thin space, 140
three-part titles, 89
· ti (temporary indent) request, 39
title length, 87
titles, 85
· tl (title) request, 89
• tm (terminal message) request, 98
· tr (translate characters) request, IS4
translating characters, 154
transparent throughput, 10
traps

change position of, 120
diversion, 120
end-of-processing, 121
input-line-count, 121
page, 119

troff
exit from, 98

troff messages, 98
tum escape mechanism off, 153
tum escape mechanism on, 153

u
u (move up) function

\u (move up) function, 13S
· u (fill mode indicator) number register, 24
~ uf (underline font) request, 30
· ul (underline) request, 29
underline font request, 30
underline request, 29
units, 10
unpaddable space, 17

-212-

V
\ v (vertical motion) function, 136
• v (vertical spacing) number register, S3
vertical lines, 146, 147
vertical motion, 136
vertical position

mark, 45
return to,46

vertical spacing request, 53
· vs (change vertical spacing) request, S3

W
\w (width) function, 143
• wh (when something) request, 119, 86
when something, 86, 119
when request, 86, 119
width function, 143
word, 17

X
\x (get extra line space) function, 54

y
yr (last two digits of year) number register, 125

Z
\z (zero motion) function, 142
• z (name of current diversion) number register, 118
zero motion function, 142
zero-width character, 18, 141

(

Revision History

Revision Date Comments

A 17 February 1986 First release of Using nroff and
troff on the Sun Workstation.

(

"

Notes

